Рефераты по Физике

Фотоэлектронная эмиссия - Курсовая работа

Страница 8

Применение

В настоящее време на основе внешнего и внутерннего фотоэффекта строится бесчисленное множиство приемников излучения, преобразующих световой сигнал в электрический и объединненых общим названием-фотоэлементы. Они находят весьма широкое применение в технике и научных исследованиях. Самое разное объективные и оптические измерения немыслимы в наше время без применения того или иного типа фотоэлементов.Современная фотометрия, спектрометрия и спектрофотометрия в широчайшей оласти спектра, спетральный анализ вещества, объективное измерение весьма слабых световых потоков,наблюдаемых,например, при изучении спектров комбинационого рассеяния света,в астрофизике, биологии, и т.д. трудно представить себе без применения фотоэлементов; регистрация инфракрасных спектров часто осуществяется специальными фотоэлементами для ллиноволновой области спектра.Необычайно широко используется фотоэлементы в технике: контроль и управления производственными процессами,разнобразные системы связи от передачи изображения и телевидения до оптической на лазерах и космической техники представляют собой далеко не полный перечень областей применения фотоэлементов при решении разнообразнейших вопросов в современной промышленности и связи.Огромное разнообразие задач,решаемых с помощью фотоэлементов, вызывало к жизни чрезвычайно большое разнообразие типов фотоэлементов с различными техническими характеристиками.Выбор оптимального типа фотоэлементов для решения каждой конкретной задачи основывается на знании этих характеристик.Очень важным достоинством вакуумныхвакумных фотоэлементов является их высокая постоянство и линейность связи светого потока с фототоком.Поэтому они длительное время преимущественно использовались в обективной фотометрии, спектрометрии, и спектрофотометрии и спектральным анализе в видимой и ультрафиолетовой областях спектра.Главным недостатком вакуумных фооэлементов при световых измерениях следует считать малость электрических сигналов, вырабатываемых этими приемниками света.Последний недостаток полностью устраняется в фотоэлектронных умножителях (ФЭУ),представляющих как бы развитие фотоэлементов.ФЭУ были впервые построены в 1934 г. Принцип действия ФЭУ можно проследить на рис. 10

Ф Э1

Э 3

А

ФК Э2 А

ФК Э 2

Рис 10.

Фотоэлектроны, эмитируемые с фотокатода ФК под действием электрического поля, ускоряются и попадают на первый промежуточный электрод Э1. Падая на него, фотоэлектроны вызывают эмиссию вторичных электронов, причем в определенных условиях эта вторичная эмиссия может в несколько раз превшать первоначальный поток фотоэлектронов.Конфигурация электродов такова, что большинство фотоэлектронов попадает на электрод Э1, а большинство вторичных электронов попадает на следующий электрод Э2 , где процесс умножения повторяется, и т.д. Вторичные электроны с последнего из электродов(динодов),а их бывает до 10-15, собираются на анод . Общий коэффициент усиления таких систем достигает 107 –108 , а интегральная чувствительность ФЭУ достигает тысяч ампер на люмен.Это, конечно, не означает возможности получения больших токов, а свидетелствует лишь о врзможности измерения малых световых потоков.Очевидно, те же технические характеристики, что и у вакуумных фотоэлементов,а также коэффициент усиления и его зависимость от питающего напряжения полностью характеризуют ФЭУ .

В настоящее време последние повсеместно вытесняют вакуумные фотоэлементы.К недостаткам ФЭУ следует отнести необходимость применения источника высоковольтного и стабилизированого питания, несколько худшую стабильность чувствительности и большии шумы. Однако путем примнения охлаждения фотокатодов и измерения не выходного тока, а числа импульсов,из которых каждый соответствует одному фотоэлектрону, эти недостатки могут быть в значительной степени подавлены. Большим преимуществом всех приемников света, использующих внешний фотоэффект, является то обстоятельятво, что их фототок не изменяется при изменении нагрузки.Это означает, что при малых значениях фототока можно применить прктически сколь угодно большое сопротивление нагрузки и тем самым достичь значения падения напряжения на нем, достаточно удобного для ригистрации и усиления.С другой стороны , заменяя сопротивление на емкость, можноб измеряя напряжение на этой емкости, получать величину, пропорциональную усредненной величине светового потока за заданный интервал времени.Последние черезвычайно важно в тех случаях, когда необходимо и змерить световой поток от нестабильного источника света – ситуация , типичная для спектроаналитическихизмерений.

Перейти на страницу:  1  2  3  4  5  6  7  8  9