Фундаментальные взаимодействия элементарных частиц
Важную роль последующие поколения, по-видимому, играют также и в том, что частицы первого поколения имеют именно те массы, которые они имеют. А от соотношения между массами и-, d-кварков и электрона зависит само наше существование. Ведь разность масс нейтрона и протона обусловлена в основном разностью масс и- и d-кварков. А если бы выполнялось неравенство тр—mn+me>0, то водород был бы нестабилен.
Цвет и глюоны.
Источниками этих сил между кварками являются цветовые заряды,а их переносчиками являются частицы- глюоны.
|
Установлено, что кварки каждого аромата существуют в виде трех строго вырожденных разновидностей. Принято говорить, что эти разновидности отличаются друг от друга своими цветами. Обычно говорят, что кварки бывают трех цветов: желтого, синего и красного. Разумеется, никакого отношения к обычным, оптическим цветам эти кварковые цвета не имеют. В случае кварков «цвет» — это просто удобный термин для обозначения квантовых чисел, характеризующих кварки. Выбор трех основных оптических — желтого, синего и красного — цветов для обозначения зарядов кварков позволяет, как мы сейчас увидим, пользоваться наглядной оптической аналогией.
Рис. 5 |
Цветовые заряды антикварков сопряжены зарядам кварков. Иногда их называют антижелтым, антисиним, антикрасным, иногда — фиолетовым, оранжевым и зеленым (рис. 5) в соответствии с известной последовательностью дополнительных цветов в оптическом спектре.
При таком подборе кварковых цветов адроны естественно называть бесцветными, белыми частицами. Барионы бесцветны, так как состоят из трех кварков трех взаимно дополнительных цветов. Мезоны представляют собой бесцветные суперпозиции кварков и антикварков.
В сильном взаимодействии цветовые заряды кварков играют ту же роль, что и электрические заряды частиц в электромагнитном взаимодействии. Роль фотонов при этом играют электрически нейтральные векторные частицы, которые получили название глюонов (от английского glue — клей). Обмениваясь глюонами, кварки «склеиваются» друг с другом и образуют адроны.
Основное отличие глюонов от фотонов заключается в том, что фотон — один и он электрически-нейтрален, а глюонов — восемь и он.и несут цветовые заряды. Благодаря своим цветовым зарядам глюоны сильно взаимодействуют друг с другом, испускают друг друга. Это как бы «светящийся свет». В результате такого нелинейного взаимодействия распространение глюонов в вакууме совершенно не похоже на распространение фотонов, а цветовые силы не похожи на электромагнитные.
Электромагнитное взаимодействие.
В электромагнитном взаимодействии участвуют все заряженные тела, все заряженные элементарные частицы. В этом смысле оно достаточно универсально. Классической теорией электромагнитного взаимодействия является максвелловская электродинамика. В качестве константы связи принимается заряд электрона e.
Если рассмотреть два покоящихся точечных заряда q1 и q2 , то их электромагнитное взаимодействие сведется к известной электростатической силе. Это означает, что взаимодействие является дальнодействующим и медленно спадает с ростом расстояния между зарядами.
Классические проявления электромагнитного взаимодействия хорошо известны, и мы не будем на них останавливаться. С точки зрения квантовой теории переносчиком электромагнитного взаимодействия является элементарная частица фотон - безмассовый бозон со спином 1. Квантовое электромагнитное взаимодействие между зарядами условно изображается следующим образом:
|
Заряженная частица испускает фотон, в силу чего состояние ее движения изменяется. Другая частица поглощает этот фотон и также изменяет состояние своего движения. В результате частицы как бы чувствуют наличие друг друга. Хорошо известно, что электрический заряд является размерной величиной. Удобно ввести безразмерную константу связи электромагнитного взаимодействия. Для этого надо использовать фундаментальные постоянные и c. В результате приходим к следующей безразмерной константе связи, называемой в атомной физике постоянной тонкой структуры
Легко заметить, что данная константа значительно превышает константы гравитационного и слабого взаимодействий.
С современной точки зрения электромагнитное и слабое взаимодействия представляют собой различные стороны единого электрослабого взаимодействия. Создана объединенная теория электрослабого взаимодействия - теория Вайнберга-Салама-Глэшоу, объясняющая с единых позиций все аспекты электромагнитных и слабых взаимодействий. Можно ли понять на качественном уровне, как происходит разделение объединенного взаимодействия на отдельные, как бы независимые взаимодействия?
Пока характерные энергии достаточно малы, электромагнитное и слабое взаимодействия отделены и не влияют друг на друга. С ростом энергии начинается их взаимовлияние, и при достаточно больших энергиях эти взаимодействия сливаются в единое электрослабое взаимодействие. Характерная энергия объединения оценивается по порядку величины как 102 ГэВ (ГэВ - это сокращенное от гигаэлектрон-вольт, 1 ГэВ = 109 эВ, 1 эВ = 1,6*10-12 эрг = 1,6*1019 Дж). Для сравнения отметим, что характерная энергия электрона в основном состоянии атома водорода порядка 10-8 ГэВ, характерная энергия связи атомного ядра порядка 10-2 ГэВ, характерная энергия связи твердого тела порядка 10-10 ГэВ. Таким образом, характерная энергия объединения электромагнитных и слабых взаимодействий огромна по сравнению с характерными энергиями в атомной и ядерной физике. По этой причине электромагнитное и слабое взаимодействия не проявляют в обычных физических явлениях своей единой сущности.
Перейти на страницу: 1 2 3 4 5 6 7 8 9 10 11