Фундаментальные взаимодействия элементарных частиц
В связи с вопросом о нейтринных массах возрос интерес к поискам двух явлений: нейтринных осцилляции и двойного -распада.
Впервые на возможность существования нейтринных осцилляции указал в середине 50-х годов Понтекорво, вскоре после того, как Пайс и Пиччиони предсказали осцилляционные эффекты в пучках нейтральных K-мезонов. В настоящее время число работ, посвященных теоретическому обсуждению нейтринных осцилляции, исчисляется сотнями. В ряде лабораторий на ядерных реакторах и ускорителях идут экспериментальные поиски этого явления.
Попытки наблюдать осцилляции на ускорителях также пока что не дали положительного результата. Не обнаружены осцилляции и у нейтрино, рожденных космическими лучами в атмосфере Земли. Наиболее точные измерения такого рода были осуществлены в Баксанской нейтринной обсерватории. Здесь наблюдали реакции, инициированные нейтрино, рожденными над Австралией и прошедшими сквозь земной шар. Несмотря на такой большой путь от источника до детектора, никаких признаков утечки (по сравнению с расчетным потоком нейтрино видно не было.
Обычно лептоны характеризуют лептонным квантовым числом L, которое равно +1 дляи —1 для . В стандартной теории слабого взаимодействия лептонное число сохраняется. Если, однако, нейтрино обладают майорановыми массами, то лептонное число не сохраняется. При этом, вместо трех нейтрино и трех антинейтрино, мы имели бы дело с шестью истинно нейтральными, так называемыми майорановыми нейтрино. Входящие в слабые токи нейтральные состояния представляли бы собой суперпозиции этих майорановых нейтрино.
Несохранение лептонного числа делает возможным очень своеобразное явление — безнейтринный двойной -распад. В обычном -распаде происходит слабый переход
|
Рис. 14 Рис. 15
одного d-кварка в один u-кварк. В отличие от этого, в двойном -распаде два d-кварка одновременно переходят в два u-кварка. Если при этом антинейтрино испускаются (рис. 14), то распад называется двухнейтринным ; если же виртуальное нейтрино, испущенное одним кварком, поглощается другим кварком (рис. 15), то распад называется безнейтринным . Последний процесс возможен, только если нейтрино майораново, так как лептонный заряд в этом процессе не сохраняется. Оба этих распада идут во втором порядке теории возмущений по константе слабого взаимодействия GF, и поэтому ожидаемые времена полураспада, для них очень велики.
Вероятность двухнейтринного распада можно рассчитать более или менее надежно. (Она сильно меняется от ядра к ядру, поскольку очень чувствительна к величине энерговыделения.) В отличие от этого, вероятность безнейтринного распада надежно предсказать нельзя, пока остаются неизвестными степень и механизм несохранения лептонного числа.
Вопрос о том, какие частицы являются переносчиками слабого взаимодействия, долгое время был неясен. Понимания удалось достичь сравнительно недавно в рамках объединенной теории электрослабых взаимодействий - теории Вайнберга-Салама-Глэшоу. В настоящее время общепринято, что переносчиками слабого взаимодействия являются так называемые - и Z0-бозоны. Это заряженные и нейтральная Z0 элементарные частицы со спином 1 и массами, равными по порядку величины 100 mp.
Особенности слабого взаимодействия.
Отличительными признаками слабых процессов являются следующие.
1. Их слабость (медленность), выражающаяся в том, что вероятность этих процессов на много порядков меньше вероятностей сильных и электромагнитных процессов.
2. Малый радиус взаимодействия — как минимум на два порядка меньший, чем радиус сильного взаимодействия. Ни в одном из слабых процессов не удалось до 1982 г. об наружить каких-либо отклонений от точечного четырехфермионного взаимодействия.
3. Сильное, максимально возможное несохранение пространственной и зарядовой четностей. Так, в заряженные токи входят только левые компоненты спиноров, описывающих частицы, и только правые компоненты спиноров,описывающих античастицы.
4. Несохранение СР-четности.
5. Несохранение ароматов (странности, чарма и т. д.).
6. То обстоятельство, что только в слабых взаимодействиях принимают участие нейтрино.
Согласно электрослабой теории слабые взаимодействия заряженных токов обусловлены обменами W-бозонами, а нейтральных — Z-бозонами, подобно тому как взаимодействие электромагнитных токов обусловлено обменом фотонами. При этом слабость и малый радиус слабого взаимодействия объясняются тем, что, в отличие от фотонов, W- и Z-бозоны — очень тяжелые частицы. Остальные особенности слабого взаимодействия прямо заложены в предположении о форме исходных фермионных токов теории.
Тенденции объединения взаимодействий.
Мы видим, что на квантовом уровне все фундаментальные взаимодействия проявляют себя одинаковым образом. Элементарная частица вещества испускает элементарную частицу - переносчик взаимодействия, которая поглощается другой элементарной частицей вещества. Это ведет к взаимовлиянию частиц вещества друг на друга.
Перейти на страницу: 1 2 3 4 5 6 7 8 9 10 11