Рефераты по Физике

Мёссбауэровская спектроскопия

Страница 6

Магнитное дипольное расщепление. Если атомное ядро в энергетическом состоянии E, обладающее отличным от нуля магнитным моментом μ, поместить постоянное во времени магнитное поле Н, то энергия ядерного состояния изменится на величину [13]

∆E = - (μН)= - (Н, (1.16)

где I – спин ядра в состоянии с энергией E, – магнитное квантовое число, принимающее 2I + 1значений: I, I – 1, …, -I. Поскольку, в отличие от случая электрического квадрупольного взаимодействия, изменение энергии ∆E пропорционально первой степени , вырождение по магнитному квантовому числу снимается полностью. В отсутствие магнитного поля в экспериментах по ядерному гамма-резонансу измеряются переходы между состояниями , и , , а при наличии поля между , , и , , . Правила отбора для магнитного квантового числа , приводят для ядра Fe (= 0, = 1/2, = ±1/2 и = 14,4 кэВ, = 3/2, = ±1/2, ±3/2) к шести разрешенным переходам и к взаимодействию в мессбауэровских спектрах магнитоупорядоченных веществ шести отдельных линий поглощения (ядерный эффект Зеемана) (см. рис. 1.3в).

Используя значение μ(Fe) = 0,0903 ± 0,0007 я. м., полученное в работе [14] с помощью метода ЯМР, и измеренное с помощью эффекта Мессбауэра значение μ(Fe) = 0,153 ± 0,004 я. м., Ханна и др. [15] определили величину поля на ядре Fe в чистом железе при комнатной температуре: H (Fe) = 333 ± 10 кЭ.

Интенсивности линий зеемановского секстета магнитоупорядоченных веществ, содержащих мессбауэровский изотоп Fe, относятся, в случае тонкого поглотителя, как 3 : z : 1 : 1 : z : 3, где 0 ≤ z ≤ 4. Параметр z характеризует относительную интенсивность переходов 3/2 à ±1/2 (для 2-й и 5-й линий секстета) и является функцией угла между направлением пучка γ-квантов и осью магнитного поля. Для поликристаллических образцов, при условии равной вероятности различных направлений намагниченности в магнитных доменах или изотропности фактора Дебая-Валлера, среднее значение < z> = 2 [6].

Магнитное поле на ядре Fe в чистом железе антипараллельно магнитному моменту атома. Это связано с тем, что основной вклад в эффективное поле дает обменная поляризация s-электронов внутренних оболочек атома результирующим спином 3d-электронов [13]. Обменное взаимодействие s- и d-электронов обуславливает их притяжение при параллельной ориентации спинов и отталкивание при антипараллельной, что приводит к появлению отличной от нуля спиновой плотности s-электронов на ядре атома. Величина этого вклада дается выражением [7]

(1.17)

где и – плотности s-электронов n-й оболочки со спином, параллельным и антипараллельным магнитному моменту атома.

В чистом ферромагнитном железе наряду с поляризацией оболочек внутренних и внешних s-электронов существуют другие источники магнитного поля на ядре. Вклад в магнитное поле даёт орбитальный момент электронов. Согласно данным [7.12], в металлическом железе напряженность магнитного поля, создаваемая незамороженным орбитальным моментом 3d-электронов, равна ~ + 70 кЭ. Другим источником поля является вклад от магнитных моментов соседних атомов, рассматриваемых как магнитные диполи. Для кубических кристаллов, состоящих из одинаковых атомов, этот вклад равен нулю. В железе и его сплавах напряженность эффективного магнитного поля определяется степенью поляризации электронов проводимости с 3d-электронами атома железа.

Как следует из соотношения (1.16), величина магнитного расщепления ядерных уровней и, соответственно, расстояние между линиями секстета определяются произведением постоянного ядерного μ и переменного атомного H сомножителей. Это позволяет измерять поля на ядрах атомов магнитных материалов, изучать механизмы их формирования, а также исследовать влияние на эффективное магнитное поле на ядре таких факторов, как состав, температура, давление, наложение внешних полей и т.д.

Теоретическая форма мессбауэровского спектра при наличии магнитного расщепления ядерных уровней может быть представлена суперпозицией лоренцевских линий:

Перейти на страницу:  1  2  3  4  5  6  7  8