Оптические квантовые генераторы
(рис.63).
С увеличением числа проходов поде на зеркалах стремится к стационарному распределению, которое можно представить так:
где V(x,у) - функция распределения, зависящая от координат на поверхности зеркал, не меняющаяся от отражения к отражению;
у - комплексная постоянная, не зависящая от пространственных координат.
Подставив формулу (112) в выражение (III). получим интегральное уравнение
Оно имеет решение лишь при определенных значениях [Гамма] =[гамма миним.] называемых собственными значениями, Функции Vmn, удовлетворяющие интегральному уравнению, характеризуют структуру поля различных типов колебаний резонатора, которые называют поперечными колебаниями и обозначают как колебания типа ТЕМmn Символ ТЕM указывает на то, что водны внутри резонатора близки к поперечным электромагнитным, т.е. не имеющим составляющих поля вдоль направления распространения волны. Индексы m и n обозначают число изменений направления поля вдоль сторон зеркала (для прямоугольных зеркал) или по углу и вдоль радиуса (для круглых зеркал). На рис.64 показана конфигурация электрического поля для простейших поперечных типов колебаний открытых резонаторов с круглыми зеркалами. Собственные типы колебаний открытых резонаторов характеризуются не только поперечник распределением поля, но и распределением его вдоль оси резонаторов, которое представляет собой стоячую волну и отличается числом полуволн, укладывающихся по длине резонатора. Для учета этого в обозначения типов колебаний вводится третий ивдекс а , характеризующий число полуволн, укладывающихся вдоль оси резонатора.
Оптические квантовые генераторы на твердом теле
В оптических квантовых генераторах на твердом теле, или твердотельных ОКГ, в качестве активной усиливающей среды используются кристаллы или аморфные диэлектрики. Рабочими частицами, переходы меяду энергетическими состояниями которых определяют генерацию, как правило, являются ионы атомов переходных групп Периодической таблицы Менделеева, Наиболее часто используются ионы Na3+, Cr3+, Но3+, Pr3+ . Активные частицы составляют доли или единицы процента от общего числа атомов рабочей среды, так что они как бы образуют "раствор" слабой концентрации и потому мало взаимодействуют друг с другом. Используемые энергетические уровни представляют собой уровни рабочих частиц, расщепленные и уширенные сильными неоднородными внутренними полями твердого вещества. В качестве основы активной усиливающей среды используются наиболее часто кристаллы корунда (Al2O3), иттриево-алюминиевого граната YAG (Y3Al5O12), разные марки стекол и т.д.
Инверсия населенностей в рабочем веществе твердотельных ОКГ создается методом, аналогичным используемому в парамагнитных усилителях. Она осуществляется с помощью оптической накачки, т.е. воздействием на вещество светового излучения высокой интенсивности.
Как показывают исследования, большинство существующих в настоящее время активных сред, используемых- в твердотельных ОКГ, удовлетворительно описываются двумя основными идеализированными энергетическими схемами: трех- и четырехуровневой (рис.71).
|
Рассмотрим вначале метод создания инверсии населенностей в средах, описываемых трехуровневой схемой (см.рис.71,а). В нормальном состоянии заселен лишь нижний основной уровень 1 (энергетическое расстояние между уровнями значительно больше kT), так как переходы 1—>2, и 1—>3) принадлежат оптическому диапазону. Переход между уровнями 2 и 1 является рабочим. Уровень 3 вспомогательный и используется для создания инверсии рабочей пары уровней. Он в действительности занимает широкую полосу допустимых значений энергии, обусловленную взаимодействием рабочих частиц с внутрикристаллическими полями.
Для создания инверсии рабочее вещество облучают интенсивным светом с частотным спектром, соответствующим переходу между уровнями 1—>3. С уровня 3 атомы переходят на уровень 2, . Этот переход, как правило, является безизлучательным. Энергия при этом идет на нагревание рабочего тела. При достаточной интенсивности накачки на уровне 2. удается получить больше атомов, чем их остается на основном уровне, т.е. возникает инверсия населенностей для рабочей пары уровней.
В активных средах, описываемых четырехуровневой схемой (см .рис. 71,б), переход 3-2 является рабочим, верхний уровень так же, как в трехуровневой схеме, представляет собой широкую полосу. Второй уровень находится от основного на энергетическом расстоянии, значительно большем kT. Поэтому при термодинамическом равновесии он практически не заселен. Большинство частиц, попавших на уровень 4 , затем переходит безизлучательным путем на уровень 3 , что при соответствующих условиях приводит к инверсии населенностей для пары уровней 3-2.
В четырехуровневой системе по сравнению с трехуровневой легче создать инверсию населенностей, так как нижний рабочий уровень не заселен. Для этого необходимо перевести незначительное количество частиц с основного уровня на верхний рабочий. В трехуровневой системе для получения инверсии требуется перебросить на верхний рабочий уровень с основного по крайней мере половину частиц.
На рис.72, а приведена схема ОКГ на твердом теле. Она включает оптический резонатор, рабочее тело 1 , лампу накачки 2 с отражателем 3 , систему ее питания и зажигания разряда. Оптический резонатор образован зеркалами r1 и r2. Обычно в них используются многослойные интерференционные диэлектрические отражающие покрытия, в которых показатель преломления переменно меняется от слоя к слою. Слои наносят вакуумным напылением или химическим путем, они имеют толщину, равную четверти длины волны в диэлектрике на рабочей частоте. С увеличением количества слоев коэффициент отражения возрастает. При n=15 и больше он превышает 99%.
Перейти на страницу: 1 2 3 4 5 6 7 8 9 10 11