Рефераты по Физике

Гидродинамика вязкой жидкости

Страница 1

Введение

ГИДРОДИНАМИКА (от гидро . и динамика), раздел гидромеханики, изучает движение жидкостей и воздействие их на обтекаемые ими твердые тела. Теоретические методы гидродинамики основаны на решении точных или приближенных уравнений, описывающих физические явления в движущихся жидкости или газе. В экспериментальной гидродинамике возникающие задачи исследуются на моделях, обтекаемых жидкостью или газом, при этом должны соблюдаться условия подобия теории. Результаты гидродинамики используют при проектировании кораблей, самолетов, ракет и др.

Гидродина­мика представляет собой раздел механики сплошных сред, в кото­ром изучается движение несжимаемых жидкостей и взаимодействие несжимаемых жидкостей с твердыми телами, — использует единый подход к изучению жидкостей и газов.

В механике с большой степенью точности жидкости и газы рассматриваются как сплошные, непрерывно распределенные в занятой ими части пространства. Плотность же газов от давления зависит существенно. Из опыта известно, что сжимаемостью жидкости и газа во многих задачах можно пренебречь и пользоваться единым поняти­ем несжимаемой жидкости — жидкости, плотность которой всюду одинакова и не изменяется со временем.

Если в покоящуюся жидкость поместить тонкую пластинку, то части жидкости, находящиеся по разные стороны от нее, будут действовать на каждый ее элемент ∆S с силами ∆F, которые независимо от того, как пластинка ориентирована, будут равны по модулю и направлены перпендикулярно площадке ∆S, так как наличие касательных сил привело бы частицы жидкости в движение.

Физическая величина, определяемая нормальной силой, действующей со стороны жидкости на единицу площади, называется давлениемр жидкости:

P = ∆F/∆S.

Единица давления — паскаль(Па): 1 Па равен давлению, создаваемому силой 1 Н, равномерно распределенной по нормальной к ней поверхности площадью 1 м2 (1 Па=1 Н/м2).

Давление при равновесии жидкостей (газов) подчиняется закону Паскаля*: давле­ние в любом месте покоящейся жидкости одинаково по всем направлениям, при­чем давление одинаково передается по всему объему, занятому покоящейся жидкос­тью.

1. Коэффициент вязкости. Течение по трубе

Вязкость (внутреннее трение)— это свойство реальных жидкостей оказывать сопротив­ление перемещению одной части жидкости относительно другой. При перемещении одних слоев реальной жидкости относительно других возникают силы внутреннего трения, направленные по касательной к поверхности слоев. Действие этих сил проявля­ется в том, что со стороны слоя, движущегося быстрее, на слой, движущийся медлен­нее, действует ускоряющая сила. Со стороны же слоя, движущегося медленнее, на слой, движущийся быстрее, действует тормозящая сила.

Идеальная жидкость, т. е. жидкость без трения, является аб­стракцией. Всем реальным жидкостям и газам в большей или мень­шей степени присуща вязкость или внутреннее трение. Вязкость проявляется в том, что возникшее в жидкости или газе движение после прекращения действия причин, его вызвавших, постепенно прекращается.

Для выяснения закономерностей, которым подчиняются силы внутреннего трения, рассмотрим следующий опыт. В жидкость погружены две параллельные друг другу пластины, линейные размеры которых значительно превосходят расстояние между ними d. Нижняя пластина удерживается на месте, верхняя приводится в движение относительно нижней с некоторой скоро­стью v0. Опыт дает, что для перемещения верхней пластины с постоянной скоростью v0 необходимо действовать на нее с вполне определенной постоянной по величине силой F. Раз пластина не получает ускорения, значит, действие этой силы уравновешивается равной ей по величине противоположно направленной силой, кото­рая, очевидно, есть сила трения, действующая на пластину при ее движении в жидкости. Обозначим ее Fтр.

Варьируя скорость пластины v0, площадь пластин S и расстоя­ние между ними d, можно получить, что

(1)

где — коэффициент пропорциональности, зависящий от природы и состояния (например, температуры) жидкости и называемый коэффициентом внутреннего трения или коэффициентом вязкости, или просто вязкостью жид­кости (газа).

При движении жидкости в круглой трубе скорость равна нулю у стенок трубы и максимальна на оси трубы. Полагая течение ла­минарным, найдем закон изменения скорости с расстоянием r от оси трубы.

Выделим воображаемый цилинд­рический объем жидкости радиуса r и длины l. При стацио­нарном течении в трубе постоянного сечения скорости всех частиц жидкос­ти остаются неизменными. Следовательно, сумма внешних сил, приложенных к любому объему жидкости, равна нулю. На осно­вания рассматриваемого цилиндрического объема действуют си­лы давления, сумма которых равна .Эта cила дей­ствует в направлении движения жидкости. Кроме того, на боковую поверхность цилиндра действует сила трения, равная (имеется в виду значение duldr на расстоянии r от оси трубы). Ус­ловие стационарности имеет вид

(1)

Скорость убывает с расстоянием от оси трубы. Следовательно, duldr отрицательна и ldu/drl=—duldr. Учтя это, преобразуем соот­ношение следующим образом:

Разделив переменные, получим уравнение:

Интегрирование дает, что

(2)

Постоянную интегрирования нужно выбрать так, чтобы скорость обращалась в нуль на стенках трубы, т. е. при r=R (R — радиус трубы). Из этого условия

Перейти на страницу:  1  2  3  4