Рефераты по Физике

Гидродинамика вязкой жидкости

Страница 2

Подстановка значения С в (2) приводит к формуле

(3)

Значение скорости на оси трубы равно

(4)

С учетом этого формуле (3) можно придать вид

(5)

Таким образом, при ламинарном течении скорость изменяется с рас­стоянием от оси трубы по параболическому закону.

2. Формула Пуазейля.

Метод Пуазейля. Этот метод основан на ламинарном течении жидкости в тонком капилляре. Рассмотрим капилляр радиусом R и длиной /. В жидкости мысленно выделим цилиндрический слой радиусом r и толщиной dr. Сила внутреннего трения , действующая на боковую поверхность этого слоя,

где dS — боковая поверхность цилиндрического слоя; знак минус означает, что при возрастании радиуса скорость уменьшается.

Для установившегося течения жидкости сила внутреннего трения, действующая на боковую поверхность цилиндра, уравновешивается силой давления, действующей на его основание:

После интегрирования, полагая, что у стенок имеет место прилипание жидкости, т. е. скорость на расстоянии R от оси равна нулю, получаем

Отсюда видно, что скорости частиц жидкости распределяются по параболическому закону, причем вершина параболы лежит на оси трубы. За время t из трубы вытечет жидкость, объем которой

откуда вязкость

3. Формула Стокса.

Формула Стокса. При малых Re, т. е. при небольших скоростях движения (и небольших /), сопротивление среды обусловлено практически только силами трения. Стокс установил, что сила сопротивления в этом случае пропорциональна коэффициенту динамической вязкости , скорости v движения тела относительно жидкости и характерному размеру тела I: (предполагается, что расстояние от тела до границ жидкости, например до стенок со­суда, значительно больше размеров тела). Коэффициент пропор­циональности зависит от формы тела. Для шара, если в качестве / взять радиус шара r, коэффициент пропорциональности оказывается равным 6я. Следовательно, сила сопротивления движению шарика в жидкостях при небольших скоростях в соответствии с формулой Стокса равна

(1)

Метод Стокса. Этот метод определения вязкости основан на измерении скорости медленно движущихся в жидкости небольших тел сферической формы.

На шарик, падающий в жидкости вертикально вниз, действуют три силы: сила тяжести (р — плотность шарика), сила Архимеда (р' — пло­тность жидкости) и сила сопротивления, эмпирически установленная Дж. Стоксом: , где r — радиус шарика, v — его скорость. При равномерном движении шарика

или

Откуда

Измерив скорость равномерного движения шарика, можно определить вязкость жид­кости (газа).

4. Закон подобия.

Геометрическое, кинематическое, динамическое подобие.

Этап изучения зависимости интересующей величины от системы выбранных определяющих факторов может выполняться двумя путями: аналитическим и экспериментальным. Первый путь применим лишь для ограниченного числа задач и при том обычно лишь для упрощенных моделей явлений.

Другой путь, экспериментальный, в принципе может учесть многие факторы, но он требует научно обоснованной постановки опытов, планирования эксперимента, ограничения его объема необходимым минимумом и систематизации результатов опытов. При этом должно быть обосновано моделирование явлений.

Эти задачи позволяет решать так называемая теория подобия, т. е. подобия потоков несжимаемой жидкости.

Гидродинамическое подобие складывается из трех составляющих: геометрического подобия, кинематического и динамического.

Геометрическое подобие как известно из геометрии, представляет собой пропорциональность сходственных размеров и равенство соответствующих углов. Под геометрическим подобием понимают подобие тех поверхностей, которые ограничивают потоки, т. е. подобие русел (или каналов).

Отношение двух сходственных размеров подобных русел назовем линейным масштабом и обозначим эту величину через .Эта величина одинакова для подобных русел I и II.

Кинематическое подобие означает пропорциональность местных скоростей в сходственных точках и равенство углов, характеризующих направление этих скоростей:

Где – масштаб скоростей, одинаковый при кинематическом подобии.

Так как (где T – время,масштаб времени).

Из кинематического подобия вытекает геометрическое подобие линий тока. Очевидно, что для кинематического подобия требуется геометрическое подобие русел.

Перейти на страницу:  1  2  3  4