Альтернативные источники энергии
3.4. ПЭС
В 1961 г. в СССР была опубликована работа «Приливные электростан-ции в современной энергетике», в которой доказывалось, что не приливная энергия, а попытки неправильного ее использования – причина неудачи проекта Кводди. Действительно, зачем нужно затрачивать большие сред-ства, чтобы трижды дублировать мощность ПЭС (на двух бассейнах и ГЭС) с целью получить от прилива непрерывную и равномерную энергию, т.е. энергию с такими качествами, которыми не обладает природа самого явления? С другой стороны, современное потребление энергии вовсе не требует равномерности. Потребность человека в энергии имеет не равно-мерный, а волнообразный характер: днем больше, ночью меньше. Таким образом, задача заключается не в том, чтобы выровнять поток приливной энергии, а в том, чтобы совместить «волны» потребления с волнами прилива. Эту задачу можно решить с помощью обратимого капсульного гидроагрегата, созданного специально для ПЭС. Он может работать и как насос. При этом в часы неполной нагрузки работающих совместно с ПЭС тепловых электростанций их мощность можно использовать (при совпа-дении этих часов с полной или малой водой в море) для того, чтобы подка-чивать воду из моря в бассейн ПЭС (поднимать его уровень выше уровня прилива) или откачивать ее из него в море, чтобы уровень бассейна стал ниже уровня отлива. Популярные рингтоны.
Работа приливов и отливов не считается экономически эффективной. Такой пессимизм вызван тем, что предварительные расчеты не всегда сов-падают с конечными результатами. Скажем, перед строительством ПЭС на Рансе многие скептики предрекали, что энергия ее будет чрезмерно дорога. Но, несмотря на это, строительство началось, поскольку север Франции не имел достаточных запасов природного топлива. В результате ПЭС оказалась на деле достаточно эффективной и конкурентоспособной.
Говоря о приливной энергетике, нельзя не упомянуть ее недостатки, в частности, отрицательное воздействие на окружающую среду. Проходные рыбы – такие, как угорь и лососевые, - используют устья рек для икроме-тания. Заграждение этих мест плотинами препятствует нересту и может вызвать массовый замор рыбы. Кроме того, заграждения изменяют картину приливов и отливов, что также губительно действует на флору и фауну. Тем не менее, ущерб от ПЭС, конечно, меньше, чем от теплоэлектростанций.
Актуальность задачи определяется тем, что для покрытия потребности в пиковых мощностях в часы дневного и вечернего максимума (из-за недос-таточной мощности ГЭС и ограниченности объема их водохранилищ) сверхмощные ТЭС приходится загружать неравномерно, что технически и экономически нецелесообразно. Благодаря астрономи-ческому постоянству факторов, образующих прилив, среднемесячная величина прилива и энергия неизменны. Поэтому приливные электростанции могут быть надежным гарантом энергосистем, в которых работают речные ГЭС.
3.5. ЭНЕРГИЯ ВОЛН
Существует несколько проектов использования энергии волн. В Вели-кобритании доктор Ст. Солтер из Эдинбургского университета изобрел наиболее совершенный преобразователь энергии волн. Это аппарат с лопастями длиной более 18 м, расходящимися под углом от общей оси и качающимися вместе с волнами.
Аппарат Ст. Солтера – единственный, использующий энергию и гори-зонтального и вертикального движения волн. Благодаря этому его КПД при-ближается к 85 %. Как показали расчеты, метровый отрезок волны «несет» от 40 до 100 кВт энергии, пригодной для практического использования.
Энергию волн в небольших масштабах уже используют в Японии. Там более 300 буев и маяков питаются электроэнергией, вырабатываемой гене-раторами, приводимыми в движение морскими волнами. В Мадрасском порту в Индии успешно действует плавучий маяк, на котором установлен электрогенератор, приводимый в действие энергией морских волн.
В настоящее время волногенераторы используются чаще всего для энергоснабжения навигационных буев и радиомаяков. Япония начала их эксплуатацию в 1965 году, несколько позже была построена опытная вол-новая ЭС мощностью 125 кВт с перспективой до 1250 кВт. Работы по соз-данию станций такого типа ведутся в России, Швеции, США, Англии и других странах. В Норвегии в 1985 году около Бергена построена первая станция такого типа мощностью 200 кВт, где в дальнейшем предполагается установить серию таких агрегатов и значительно увеличить мощность.
Трудности по созданию волновых электростанций связаны с неравно-мерностью их работы, биологическими и другими загрязнениями рабочих органов и водопропускных каналов (обрастание водорослями, ракушками, солями), разрушением вследствие коррозии и т.п. Достоинство их – полная экологическая чистота и возможность работы в автоматическом режиме.
3.6. ГЕОТЕРМАЛЬНАЯ ЭНЕРГИЯ
Если солнечная энергия падает на нас с неба, то геотермальная находится у нас под ногами. Остается только нагнуться и взять ее. Поток этой энергии огро-мен. За год к поверхности Земли поступает 4·10^17 кВт/час тепловой энергии или 16·10^23 Дж, 90% ее поступает за счет теплопроводности пород литосферы, 10% вместе с лавой, горячим паром, водой и газами. Верхняя часть земной коры имеет температурный градиент 20 - 30°С на 1 км глубины, в некоторых местах - 1°С на 2 –30 м. и даже на 2 – 3 м. На земле довольно много мест, где имеются термальные источники и большие температурные градиенты. Это часть районов России (Камчатка, Карпаты, Кавказ), Исландии, Новой Зеландии и США, а также других стран, имеющих на своей территории горные массивы.
Все геоТЭС используют естественные термальные воды с температурой от 90 до 200°С и давлением пара от 3 до 6 МПа. Используется эффект резкого па-дения давления в потоке воды, выходящей на поверхность, Вода при этом вски-пает и превращается в пар из-за резкого падения давления. Пар после отделения от воды в сепараторе направляется в турбогенератор.