Рефераты по Физике

Физика тропических циклонов и ураганов

Страница 2

МОДЕЛИ И ТЕОРИИ

Условия образования тропического циклона, перерастающего в ураган, хорошо известны. Он возникает там, где высока температура воды (не менее 26 градусов). Это первое необходимое условие обеспечивает сильное испарение с поверхности океана, насыщение вихря водяным паром. Второе условие менее прозрачно, но столь же необходимо — малый градиент (перепад) скорости ветра по высоте вихря, который поддерживает конвективные облачные ячейки (его энергетические «батарейки») и не дает циклону распасться на мелкие вихри. Известен ряд сопутствующих факторов: резкий температурный контраст поверхности океана, скопление кучевых облаков и т.д. Подмечены корреляции ураганов с другими погодными явлениями: циркуляцией ветров в стратосфере, дождями в Западной Африке, явлением Эль-Ниньо (загадочным потеплением воды в Тихом океане).

В разное время создавались модели развития ураганов, вначале феноменологические, позднее физически обусловленные, основанные на известных процессах теплообмена между атмосферой и океаном. Удивительно — лучшее согласие с наблюдениями давали модели «среднего уровня», описывающие поведение вихря не слишком подробно, но и не очень грубо. Изощренные модели упускали, видимо, какую-то важную «деталь», которая в простых представлениях незримо присутствовала. В целом модели давали правильный ход развития уже возникшего шторма, набор его энергии и разрушительной силы.

Выделяемая энергия черпается из тепловой энергии океана и потенциальной энергии высотной неустойчивости атмосферы, переходящих в кинетическую энергию вихря. Пока ураган движется над океаном, его сила нарастает, но, выйдя на сушу, он теряет связь с энергетическим источником и быстро, за несколько дней, затухает, успев, однако, наломать немало дров. Разрушительная сила урагана не только в его огромной скорости и мощи ветра, но и в обилии влаги, вызывающей проливные дожди, наводнения, сели, обвалы.

Сценарий развитого шторма, перерастающего в ураган, а затем — в главный ураган, хорошо «работает», то есть достаточно правильно описывает реальные явления. Остается непонятым, почему ураганы образуются в строго определенных местах (атлантические — у берегов Западной Африки, тихоокеанские — в районе Филиппин и Индонезии) и в особые моменты времени, тогда как в другое время те же по виду тропические циклоны не становятся ураганами. До сих пор не понят механизм возникновения циклона, в котором начинает «на автомате» работать «машина Карно». По-видимому, нужна начальная встряска, некий спусковой механизм, порождающий первичный автономный вихрь.

ОСНОВНЫЕ УРАВНЕНИЯ И ИХ АНАЛИЗ

Прежде всего, чтобы явным образом учесть наличие неустойчивости, приводящей к формированию крупномасштабного вихря, модифицируем предложенное в монографии уравнение для максимальной скорости ветра в тропическом циклоне V следующим образом

где T – температура поверхности океана в области тропического циклона (ТЦ), T* – пороговое значение этой температуры, выше которой происходит усиление возмущений и генерация вихря, слагаемое — σV2 определяет потери энергии, обусловленные диссипативными процессами, возрастающие с ростом интенсивности вихря. Будем полагать, что скорость ветра V измеряется в м/сек, температура T в °С, а время t в сутках. Тогда, согласнохарактерные значения параметров в уравнении (1) следующие: γ ≤ 1, T* = 26.5, σ = 3*10—3.

Для температуры поверхности океана T воспользуемся уравнением [2]

Здесь T1 температура холодной воды, поднимающейся в ТЦ из нижних слоев океана к его поверхности (T1 = 23), Tf равновесная фоновая температура в отсутствие обусловленных ТЦ возмущений, значение которой определяется балансом тепла в данном сезоне, τ характерное время установления равновесной температуры. Ниже принимается τ = 10, β = 3.10-4, Tf = (28 ÷ 30).

Учет затухания урагана, обусловленного, например, его выходом на более холодную воду, будем моделировать выбором переменного параметра Tf (t). В численных расчетах использовалась функция

(3)

где Tf1 равновесная температура на стадии формирования и последующего квазистационарного состояния вихря, t1 определяет время выхода ТЦ в область более холодной воды с понижением температуры на δTf, τd характерное время смещения ТЦ в область более холодной воды.

Таким образом в рассматриваемой нелинейной модели появились дополнительные управляющие параметры δTf, τd, t1.

Система нелинейных уравнений (1), (2) с нестационарной равновесной температурой (3) решалась численно для различных значений входящих параметров. На рис.1 показаны графики зависимости от времени скорости ветра и температуры поверхности океана в формирующемся тайфуне для модели работы при значении равновесной температуры Tf = 28. В рамках модифицированной модели (1), (2) временная динамика скорости ветра и температуры поверхности в формирующемся вихре представлена на рис.2 для следующих значений входящих параметров:

На квазистационарной стадии вихря температура T принимает значение 26.57, которое слегка выше пороговой величины T∗ = 26.5. Для полного жизненного цикла тайфуна (с учетом стадии его затухания) динамика скорости ветра и температуры поверхности показана на рис.3 при следующем выборе входящих параметров:

Tf1 = 28, δTf = 2, τ = 10, γ = 1, β = 6*10-4, σ = 3*10-3, V (0) = 0.3, T (0) = 28, t1 = 20, τd = 1.

При этом на квазистационарной стадии ТЦ скорость ветра достигает значения V = 45.63, температура снижается до величины 26.64. На конце стадии затухания она становится близкой к 24. Изменением исходных параметров системы можно менять динамику рассматриваемого процесса.

Перейти на страницу:  1  2  3  4  5  6  7