Рефераты по Физике

Физика тропических циклонов и ураганов

Страница 4

h × cp D T = v2/2, (1)

где h — КПД турбулентного преобразования тепловой энергии воздуха в кинетическую, cp — удельная теплоёмкость воздуха, равная 1 кДж/кг× К. Если допустить, что h = 0.5, то, за счёт понижения температуры воздуха D T всего на 3° К, ему сообщалась бы скорость 55 м/с.

В результате уменьшения температуры, которым сопровождается закручивание воздушных масс, ещё больше падает давление в «барической долине» и, соответственно, увеличиваются центральные силы барических градиентов. Это приводит к ещё более эффективному закручиванию, т. е. включается режим саморазгона циклона. Саморазгон притормаживается благодаря тому, что, по мере роста линейных скоростей закручивающихся воздушных струй, всё большую роль начинают играть центробежные силы и силы турбулентного трения. В стационарном режиме, когда для каждого элемента движущихся воздушных масс центробежная сила уравновешивает векторную сумму сил барического градиента и турбулентного трения, траектории воздушных потоков представляют собой, вообще говоря, сходящиеся к центру спирали.

Достигнут ли эти спирали центра циклона, или нет – определяется параметрами исходной «барической долины» и метеопараметрами воздушных масс. Для тропического циклона типична ситуация, при которой скорость тёплых влажных струй, по мере приближения к центру, успевает возрасти настолько, что центробежные силы не позволяют им проникнуть внутрь некоторого равновесного радиуса, обычно составляющего несколько десятков километров. Так и возникает удивительный феномен: кольцевой ураган, со сплошной грозовой облачностью и ливневыми осадками, который бушует по периметру круглой безоблачной зоны полного штиля, называемой «глазом» циклона.

Что касается обычного циклона умеренных широт, то для него характерно отсутствие равновесного радиуса, и в центре циклона происходит схлёстка ветров, достигающих ураганной силы; при этом образуется мощная восходящая струя с сильной турбулентностью. Разрушительная мощь центра циклона такова, что при его перемещении образуются полосы бурелома в вековых лесах и сокрушаются капитальные строения. Печальный опыт имеют и авиаторы: в центре циклона возможно разрушение самолёта в воздухе. Удивительно, но это впечатляющее природное явление – схлёстка ветров в центре циклона с образованием восходящей турбулентной струи – до сих пор не имеет даже собственного названия.

ПОДЪЕМНАЯ СИЛА ТОРНАДО

Помимо загадочности своего происхождения, торнадо имеет ещё одну интригующую тайну: его «хобот» иногда способен втянуть в себя и поднять в небеса целое озеро воды. Многие думают, что эта способность обусловлена тем, что внутри хобота давление ниже, чем атмосферное. Однако высота водяного столба, соответствующая перепаду давлений в одну атмосферу, составляет около десяти метров. Даже если внутри хобота был бы сверхвысокий вакуум, перепад давлений не поднял бы воду на высоту, большую, чем эта высота водяного столба. Тем не менее, торнадо поднимает воду на километр и выше. Специалисты полагают, что всё дело в мощных восходящих потоках внутри хобота. Но эта гипотеза, на наш взгляд, тоже не выдерживает критики. Хобот, достигнув земной поверхности, не засасывает окружающий воздух, а лишь закручивает его вокруг себя; откуда же взяться восходящим потокам внутри него?

Как показывают наблюдения, благоприятная ситуация для образования торнадо возникает тогда, когда холодное грозовое облако оказывается в тёплом сухом воздухе. При этом нередко бывает, что, ещё до зарождения хобота торнадо, само облако начинает вращаться в циклоническом направлении. Это позволяет предположить, что механизм закручивания воздуха здесь в общих чертах совпадает с вышеописанным механизмом, работающим при рождении циклона. Специфика же заключается в том, что радиальные градиенты давления и температуры возникают в компактной области и имеют значения, на много порядков большие, чем в случае циклона. Холодный и насыщенный влагой воздух опускается из грозового облака и оказывается в условиях, при которых происходит интенсивное испарение капелек воды. Это приводит к быстрому понижению температуры в области интенсивного испарения. Так и прокладывает себе путь вниз канал пониженного давления, вокруг которого закручивается вихрь. В установившемся режиме у этого вихря имеется изменяющийся с высотой равновесный радиус (см. выше), на котором центростремительные силы уравновешиваются центробежными. Поэтому название «хобот» здесь очень удачно: торнадо представляет собой, фактически, вращающуюся трубу из сильно уплотнённого воздуха. Линейная скорость этого вращения может достигать, по оценкам, 130 м/с. Как и в случае циклона, в энергию торнадо превращается не малопонятная «энергия атмосферной неустойчивости», а тепловая энергия воздушных масс.

Каким же образом эта вращающаяся «труба» поднимает воду? Ранее мы предполагали, что внутри торнадо может создаваться такая геометрия пространства-времени, которая компенсирует и даже пересиливает действие местного тяготения. Однако, все наши попытки понять, каким образом может создаваться подобная геометрия, были безуспешны. Разгадка же тайны «подъёмной силы» торнадо оказалась неожиданно тривиальной – на наш взгляд, вода поднимается по внутренней поверхности хобота благодаря действию обычных центробежных сил.

В самом деле, если раскрутить стакан, частично заполненный водой, то, ввиду появления центробежных сил, поверхность воды будет представлять собой, как известно, фигуру вращения с параболической образующей, текущая высота z которой зависит от радиуса r следующим образом: z ( r )-z0=w 2r2/2g, где w — угловая скорость вращения, g — ускорение свободного падения. Такая же параболическая поверхность образуется у закрученной воды внутри вертикальной вращающейся трубы, слегка погруженной в воду. Если эта труба цилиндрическая, то высота подъёма воды равна высоте, на которой параболическая образующая пересекается с вертикальными стенками трубы. Если же труба имеет конусность с расширением кверху, то ситуация иная. При подходящем соотношении параметров, параболическая поверхность, находящаяся внутри усечённой конической поверхности, может не пересекаться с последней. Такое соотношение параметров, теоретически соответствующее режиму «бесконечного подъёма» воды бесконечно высокой конусной трубой, имеет вид (при z0=0):

Перейти на страницу:  1  2  3  4  5  6  7