Рефераты по Физике

Три начала термодинамики

Страница 4

Изложенное положение о существовании температуры как особой функции состояния равновесной системы представляет второй постулат термодинамики.

Иначе говоря, состояние термодинамического равновесия определяется совокупностью внешних параметров и температуры.

Р.Фаулер и Э.Гуггенгейм назвали его нулевым началом, так как оно подобно первому и второму началу определяющим существование некоторых функций состояния, устанавливает существование температуры у равновесных систем. Об этом упоминалось выше.

Итак, все внутренние параметры равновесной системы являются функциями внешних параметров и температур. (Второй постулат термодинамики).

Выражая температуру через внешние параметры и энергию, второй постулат можно сформулировать в таком виде: при термодинамическом равновесии все внутренние параметры являются функциями внешних параметров и энергии.

Второй постулат позволяет определить изменение температуры тела по изменению какого либо его параметра, на чем основано устройство различных термометров.

3.1. ОБРАТИМЫЕ И НЕОБРАТИМЫЕ ПРОЦЕССЫ.

Процесс перехода системы из состояния 1 в 2 называется обратимым, если возвращением этой системы в исходное состояние из 2 в 1 можно осуществить без каких бы то ни было изменений окружающих внешних телах.

Процесс же перехода системы из состояния 1 в 2 называется необратимым, если обратный переход системы из 2 в 1 нельзя осуществить без изменения в окружающих телах.[3]

Мерой необратимости процесса в замкнутой системе является изменением новой функции состояния - энтропии, существование которой у равновесной системы устанавливает первое положение второго начала о невозможности вечного двигателя второго рода. Однозначность этой функции состояния приводит к тому, что всякий необратимый процесс является неравновесным.

Из второго начала следует, что S является однозначной функцией состояния. Это означает, что dQ/T для любого кругового равновесного процесса равен нулю. Если бы это не выполнялось, т.е. если бы энтропия была неоднозначной функцией состояния то, можно было бы осуществить вечный двигатель второго рода.

Положение о существовании у всякой термодинамической системы новой однозначной функцией состояния энтропии S, которая при адиабатных равновесных процессах не изменяется и составляет содержание второго начала термодинамики для равновесных процессов.

Математически второе начало термодинамики для равновесных процессов записывается уравнением:

dQ/T = dS или dQ = TdS (1.3)

Интегральным уравнением второго начала для равновесных круговых процессов является равенство Клаузиуса:

dQ/T = 0 (1.4)

Для неравновесного кругового процесса неравенство Клаузиуса имеет следующий вид:

dQ/T < 0 (1.5)

Теперь можно записать основное уравнение термодинамики для простейшей системы находящейся под всесторонним давлением:

TdS = dU + pdV (1.6)

Обсудим вопрос о физическом смысле энтропии.

3.2. ЭНТРОПИЯ.

Односторонность и однонаправленность перераспределения энергии в замкнутых системах подчеркивает второе начало термодинамики.

Для отражения этого процесса в термодинамику было введено новое понятие - энтропия. Под энтропией стали понижать меру беспорядка системы. Более точная формулировка второго начала термодинамики приняла такой вид: при самопроизвольных процессах в системах, имеющих постоянную энергию, энтропия всегда возрастает.

Второй закон термодинамики постулирует существование функции состояния, называемой «энтропией» (что означает от греческого «эволюция») и обладающей следующими свойствами:

а) Энтропия системы является экстенсивным свойством. Если система состоит из нескольких частей, то полная энтропия системы равна сумме энтропии каждой части.

б) Изменение энтропии d S состоит из двух частей. Обозначим через dе S поток энтропии, обусловленный взаимодействием с окружающей средой, а через di S - часть энтропии, обусловленную изменениями внутри системы, имеем:

d S = de S + di S (1.7)

Приращение энтропии di S обусловленное изменением внутри системы, никогда не имеет отрицательное значение. Величина di S = 0, только тогда, когда система претерпевает обратимые изменения, но она всегда положительна, если в системе идут такие же необратимые процессы.

Таким образом:

di S = 0 (1.8)

(обратимые процессы);

di S > 0 (1.9)

(необратимые процессы).

Для изолированной системы поток энтропии равен нулю и выражения (1.8) и (1.9) сводятся к следующему виду:

d S = di S > 0 (1.10)

(изолированная система).

Для изолированной системы это соотношение равноценно классической формулировке, что энтропия никогда не может уменьшаться, так что в этом случае свойства энтропийной функции дают критерий, позволяющий обнаружить наличие необратимых процессов. Подобные критерии существуют и для некоторых других частных случаев.

Предположим, что система, которую мы будем обозначать символом 1, находится внутри системы 2 большего размера и что общая система, состоящая системы 1 и 2, является изолированной.

Классическая формулировка второго закона термодинамики тогда имеет вид:

d S = d S1 + d S2 ³ 0 (1.11)

Прилагая уравнения (1.8) и (1.9) в отдельности каждой части этого выражения, постулирует, что:

di S1 ³ 0 , di S2 ³ 0

Ситуация при которой di S1 > 0 и di S2 < 0 , а d( S1 + S2 )>0, физически неосуществима. Поэтому можно утверждать, что уменьшение энтропии в отдельной части системы, компенсируемое достаточным возрастанием энтропии в другой части системы, является запрещенным процессом. Из такой формулировки вытекает, что в любом макроскопическом участке системы приращение энтропии, обусловленное течением необратимых процессов, является положительным. Под понятием «макроскопический участок» системы подразумевается любой участок системы, в котором содержится достаточное большое число молекул, чтобы можно было пренебречь микроскопическими флуктуациями. Взаимодействие необратимых процессов возможно лишь тогда, когда эти процессы происходят в тех же самых участках системы.

Перейти на страницу:  1  2  3  4  5  6