Рефераты по Физике

Фуллерены

Страница 10

Рисунок 12. Принципиальная схема одномолекулярного транзистора на молекуле С60.

Были разработаны физические принципы создания ана­лога транзистора на одной молекуле фуллерена, который может слу­жить усилителем наноамперного диапазона (рис. 12). Два точеч­ных наноконтакта расположены на расстоянии порядка 1—5 нм по одну сторону молекулы С60. Один из электродов является исто­ком, другой играет роль стока. Третий электрод (сетка) представ­ляет собой маленький пьезоэлектрический кристалл и подводится на ван-дер-ваальсово расстояние по другую сторону молекулы. Входной сигнал подается на пьезоэлемент (острие), деформирую­щий молекулу, расположенную между электродами — истоком и стоком, и модулирует проводимость интрамолекулярного перехо­да. Прозрачность молекулярного канала токопротекания зависит от степени размытия волновых функций металла в области фуллереновой молекулы. Простая модель этого транзисторного эффек­та — это туннельный барьер, высота которого модулируется неза­висимо от его ширины, т. е. молекула С60 используется как при­родный туннельный барьер. Предполагаемые преимущества такого элемента — малые размеры и очень короткое время пролета элек­тронов в туннельном режиме по сравнению с баллистическим слу­чаем, следовательно более высокое быстродействие активного эле­мента. Рассматривается возможность интеграции, т. е. создания более чем одного активного элемента на молекулу С60. Как купить Недвижимость на Бали incomeproperty.pro.

Углеродные наночастицы и нанотрубки.

Вслед за открытием фуллеренов С60 и С70 при ис­следовании продуктов, получаемых при сгорании графита в электрической дуге или мощном лазер­ном луче, были обнаружены частицы, состоящие из атомов углерода, имеющие правильную форму и размеры от десятков до сотен нанометров и поэтому получившие название кроме фуллеренов еще и наночастиц.

Возникает вопрос, почему так долго не могли открыть фуллерены, получающиеся из такого рас­пространенного материала, как графит? Существу­ют две основные причины: во-первых, ковалентная связь атомов углерода очень прочная: чтобы ее ра­зорвать, необходимы температуры выше 4000°С; во-вторых, для их обнаружения требуется очень сложная аппаратура - просвечивающие электрон­ные микроскопы с высоким разрешением. Как те­перь известно, наночастицы могут иметь самые причудливые формы. Были представлены различные углеродные образования в виде изве­стных форм. С практической точки зрения для наноэлектроники, которая приходит сейчас на смену микроэлек­тронике, наибольший интерес представляют нанотрубы. Эти углеродные образования были открыты в 1991 году японским ученым С. Иджима. Нанотрубы представляют собой конечные графитовые пло­скости, свернутые в виде цилиндра, они могут быть с открытыми концами или с закрытыми. Эти обра­зования интересны и с чисто научной точки зрения, как модель одномерных структур. Действительно, в настоящее время обнаружены однослойные нанотрубы диаметром 9 А (0,9 нм). На боковой поверх­ности атомы углерода, как и в графитовой плоско­сти, располагаются в узлах шестиугольников, но в чашках, которые закрывают цилиндры с торцов, могут существовать и пятиугольники и треугольни­ки. Чаще всего нанотрубы формируются в виде ко­аксиальных цилиндров.

Основной трудностью при исследовании свойств нанотрубных образований является то, что в насто­ящее время их не удается получить в макроскопиче­ских количествах так, чтобы аксиальные оси труб были сонаправлены. Как уже отмечалось, нанотрубы малого диамет­ра служат прекрасной моделью для исследований особенностей одномерных структур. Можно ожи­дать, что нанотрубы, подобно графиту, хорошо про­водят электрический ток и, возможно, являются сверхпроводниками. Исследования в этих направ­лениях — дело ближайшего будущего.

9. Заключение.

Тот факт, что фуллерены обнаружены в естест­венных минералах, имеет большое значение для нау­ки о Земле. Не исключено, что ряд неидентифицированных полос в спектрах оптического поглощения и рассеяния межзвездной пыли обусловлен фуллеренами. Еще в 60-х годах на основании теоретического анализа частот этих полос было высказано предпо­ложение о том, что они обусловлены углеродными частицами. Возможно, фуллерены помогут нам по­лучить дополнительные сведения о возникновении и эволюции Вселенной.

Что касается практической деятельности чело­века, то здесь полезны способности фуллерена из­менять свои свойства при легировании от диэлект­рических до сверхпроводящих и от диамагнетизма до ферромагнетизма. Относительно простая техно­логия получения фуллеритов с различными свой­ствами позволяет надеяться на создание в скором времени квантоворазмерных структур с чередую­щимися слоями сверхпроводник - полупроводник (или диэлектрик), металл — ферромагнетик, сверх­проводник - магнетик и т.д. Возможно, такие структуры станут основой создания новых элек­тронных приборов. Активные исследования твер­дых фуллеренов ведутся только пять лет. Многое еще не исследовано, и сейчас трудно предсказать все возможные применения этого необычного ма­териала в практической деятельности.

Список используемой литературы:

1. «Фуллерены. Их физические и электрические свойства», СПб, 1999 год.

2. ст. В.Ф. Мастеров «Физические свойства фуллеренов», Соровский образовательный журнал №1, 1997 год.

Перейти на страницу:  1  2  3  4  5  6  7  8  9  10