Голография и ее применение
Голографические мультипликаторы Фурье могут быть выполнены по схеме со сходящейся волной и по схеме с мультиплицирующим элементом в плоской волне. Вторая схема предпочтительнее, ее и рассмотрим (рис).
Образование изображения в системе может быть представлено как процесс двойной дифракции. http://www.wellturkey.ru/peresadka-volos/ дешевле сделать пересадку волос в турции.
Первая дифракция происходит на объекте 2, освещаемом плоской монохроматической волной, образуемой когерентным источником света 1. Объект 2 расположен в передней фокальной плоскости объектива 3, который образует в своей задней фокальной плоскости 4 пространственный спектр объекта. В плоскости голограммы 4, которая одновременно является передней фокальной плоскостью второго объектива 5, находится мультиплицирующий элемент, представляющий собой голограмму набора точечных источников, число и расположение которых соответствуют желаемому числу и расположению размноженных изображений. В плоскости 4 имеем произведение двух спектров Фурье: объекта и набора точечных источников. Второй объектив 5 осуществляет также преобразование Фурье (обратное) объекта в своей фокальной плоскости. Поэтому в плоскости изображения 6 имеем, совокупность изображений исходного объекта, причем линейное увеличение системы γ и размер изображений определяются соотношением фокусов объективов системы γ = f2/f1.
В качестве мультиплицирующего элемента 4 могут быть использованы две скрещенные дифракционные решетки, обеспечивающие равенство интенсивности света, дифрагированного в нулевой и несколько боковых порядков.
4.4. Голографические компенсаторы.
Данный тип ГОЭ применяют для коррекции оптических изображений. Голографические компенсаторы позволяют реализовать метод коррекции изображений, основанный на использовании сопряженной волны, образующей действительное изображение объекта (рис.). При совмещении действительного изображения искажающего элемента с самим этим элементом происходит восстановление первоначальной формы световой волны и получается неискаженное изображение наблюдаемого объекта. Искажающим элементом может быть линза, рассеиватель типа матового стекла или турбулентная атмосфера.
Рис Изготовление и работа голографического компенсатора.
Поясним суть метода на примере коррекции линзовых аберраций. На этапе изготовления голографического компенсатора на фотопленке Ф получают голограмму искажающего элемента -аберрационной линзы Л. При компенсации аберраций голограмму Г располагают по отношению к линзе в том же положении, как и при регистрации, и через нее наблюдают искаженное изображение объекта. Свет от объекта О дифрагирует на голограмме, и волна соответствующего порядка формирует свободное от аберраций изображение объекта! При освещении голограммы объектной волной от монохроматического источника В, искаженной линзой Л, восстановится изображение опорного источника Р. Если же объектная волна дополнительно искажена объектом, расположенным перед аберрационной линзой Л, то и в восстанавливающую волну вносятся такие же искажения и наблюдатель увидит изображение объекта.
Метод компенсирующей голограммы может быть использован для коррекции искажений, создаваемых не только аберрациями линзы, но и оптически неоднородной средой, разделяющей объект и приемную оптику (в том числе волоконно-оптическими жгутами).
Данный тип ГОЭ применяют для коррекции оптических изображений. Голографические компенсаторы позволяют реализовать метод коррекции изображений, основанный на использовании сопряженной волны, образующей действительное изображение объекта (рис.). При совмещении действительного изображения искажающего элемента с самим этим элементом происходит восстановление первоначальной формы световой волны и получается неискаженное изображение
наблюдаемого объекта. Искажающим элементом может быть линза, рассеиватель типа матового стекла или турбулентная атмосфера.
Рис. Изготовление и работа голографического компенсатора.
Поясним суть метода на примере коррекции линзовых аберраций. На этапе изготовления голографического компенсатора на фотопленке Ф получают голограмму искажающего элемента -аберрационной линзы Л. При компенсации аберраций голограмму Г располагают по отношению к линзе в том же положении, как и при регистрации, и через нее наблюдают искаженное изображение объекта. Свет от объекта О дифрагирует на голограмме, и волна соответствующего порядка формирует свободное от аберраций изображение объекта! При освещении голограммы объектной волной от монохроматического источника В, искаженной линзой Л, восстановится изображение опорного источника Р. Если же объектная волна дополнительно искажена объектом, расположенным перед аберрационной линзой Л, то и в восстанавливающую волну вносятся такие же искажения и наблюдатель увидит изображение объекта.
Метод компенсирующей голограммы может быть использован для коррекции искажений, создаваемых не только аберрациями линзы, но и оптически неоднородной средой, разделяющей объект и приемную оптику (в том числе волоконно-оптическими жгутами).
4.5 Голографический микроскоп.
Двухступенчатый метод голографии впервые позволил создать микроскоп, регистрирующий не только амплитуду, но и фазу световой волны, рассеянной объектом. Появление такого микроскопа открыло новые возможности исследования микрообъектов, недостижимые известными методами классической микроскопии.
В безлинзовом микроскопе достичь увеличения можно, применяя разные длины волн или разные радиусы кривизны на стадиях получения голограмм и восстановления волнового фронта.
Схема голографического микроскопа с прямой голографической записью волновых фронтов приведена на рис. Объект 2 помещается в расходящийся лазерный пучок. Полученная дифракционная картина фиксируется вместе с когерентным фоном на фотопластинке на расстоянии z1 от объекта.
Перейти на страницу: 1 2 3 4 5 6 7 8 9 10