Рефераты по Физике

Моделирование в физике элементарных частиц

Страница 6

Иначе обстоит дело при ядерных реакциях. В этом случае реагирующие частицы обладают чрезвычайно малой массой, а количество выделяющейся энергии огромно. Так, при распаде ядер урана дефект массы составляет около 0,05%, т.е. при освобождении ядерной энергии в цепной реакции масса уменьшается на 1/2000 долю первоначальной. При реакции синтеза – слияния ядер водорода в ядро гелия – дефект массы вырастает почти вдвое, он становится равным 0,09%. Подробности купить табак на развес почтой на нашем сайте.

Обычно в качестве меры прочности ядра пользуются величиной энергии связи, приходящейся на 1 нуклон[1]. Для тяжелых ядер E/M=7,5Мэв, а у промежуточных ядер несколько больше – 8,6Мэв. В этом разгадка большой устойчивости ядер промежуточных элементов.

Полная энергия связи для ядра дейтрона равна примерно 2,2Мэв, а для ядра урана 1780Мэв. Энергия должна выделятся и при делении тяжелых ядер, и при слиянии легких ядер – например, при синтезе двух ядер дейтерия в ядра гелия выделяется энергия порядка 24Мэв.

Из опытов установлено, что ядерные силы являются короткодействующими, т.е. действуют на очень малых расстояниях, их радиус действия порядка 10-15-10-14м. Таким образом, радиус действия ядерных сил в 10 тыс. раз меньше радиуса атома (10-10м). Ядерные силы, действующие между нуклонами в ядре, проявляют зарядовую независимость. Другими словами, ядерное взаимодействие не зависит от заряда ядерных частиц, т.е. ядерное взаимодействие одинаково как для пары одноименно заряженных протонов, так и для пары нейтронов или пары протон-нейтрон.

Экспериментально установлено также на очень малых расстояниях сильное отталкивание между нуклонами. Чем же можно объяснить ту необычайно крепкую связь, которая существует внутри ядра? В тридцатых годах XX века, когда складывалась теория ядра, физики знали только два сорта сил: силы тяготения и силы электромагнитные. Ни одной из этих сил нельзя было объяснить связь частиц в ядре порядка 7×106эв, а энергия связи электрона в оболочке атома около 10эв, отсюда сразу видно, как велики ядерные силы по сравнению с силами, например, удерживающими электроны в атоме. Вокруг любого электрического заряда существует электрическое поле. Оно существует независимо от того, есть ли вокруг него другие заряды или нет. О наличии этого поля можно судить по тому действию, какое оно оказывает на внесенный в него другой заряд.

В масштабах микромира электромагнитное излучение не непрерывно. Излучение происходит определенными порциями энергии – квантами. «Выражение заряд создает поле» здесь наполняется иным содержание: заряд испускает кванты поля. Взаимодействие между зарядами состоит в поглощении одним зарядом квантов излучения испускаемых другим зарядом, заряды как бы обмениваются квантами поля. Итак, взаимодействие происходит путем обмена квантами поля.

Советский ученый, лауреат Нобелевской премии И.Е. Тамм в 1934г попытался объяснить ядерные силы, удерживающие протоны и нейтроны в ядре при помощи обмена частицами. Однако им же было показано, что ни одна из известных тогда частиц – электрон, позитрон, нейтрино – не могут объяснить количественно ядерные взаимодействия, так как дают силы порядка 1010 раз меньше, чем наблюдаемые в действительности.

Вслед за Таммом в 1935г японский физик Хидеки Юкава предложил новую гипотезу, объясняющую, как происходят ядерные взаимодействия. Юкава попытался определить, какими должны быть гипотетические частицы, чтобы с их помощью осуществлялось ядерное взаимодействие. Оказалось, что требование малого радиуса действия ядерных сил приводит к обменным частицам с массой, превышающей массу электрона примерно в 200-300 раз. Эти частицы были названы мезонами.

Усилия многих ученых были направлены на то, чтобы обнаружить частицы, предсказанные Хидеки Юкава. В тридцатых годах, когда физики еще не имели в своем распоряжении мощных ускорителей, единственным источником частиц высокой энергии служили космические лучи.

В 1937г мезоны были обнаружены экспериментально К. Андерсоном и Недермеером в космических лучах. Но и эти частицы в 207 э.м. (электронных масс), назвали мю-мезонами (m-мезоны), или мюонами, не могли рассматриваться как кванты ядерного поля.

Недостающее звено связи частиц в ядре было обнаружено лишь в 1947г С. Поуэллом. В верхних слоях атмосферы, где космические лучи встречаются с ядрами ионизированных газов, от соударений рождаются короткоживущие частицы с массой, превышающей электронную в 273 раза. Эти частицы, названные пи-мезонами (p-мезоны), или пионами, существуют около двух стомиллионных долей секунды, а затем распадаются на m-мезоны и нейтрино:

Рис 2

p+ ® m+ + n

p- ® m- + n

p0 ® g + g

Земли достигают лишь продукты их распада m-мезоны, которые и были обнаружены ранее. Время жизни p0-мезонов еще меньше, около 1,9×10-16с.

Как же p--мезоны осуществляют связь нуклонов в ядре? Нейтрон, испуская отрицательный p--мезон, превращается в протон, а соседний протон, поглощая этот p--мезон, превращается в нейтрон. Через мгновение нуклон, «обернувшийся» протоном, испускает p+-мезон и вновь становится нейтроном.

В первоначальном варианте теории Юкава предполагалось, что существуют мезоны с положительным и отрицательным зарядами, которые и определяют взаимодействие между нуклонами. Но оказалось, что между одинаковыми нуклонами (т.е. протон-протон и нейтрон-нейтрон) обменные процессы не могут осуществляться заряженными пионами. Допустим, нейтрон испускает p--мезон, тогда соседний нейтрон, поглощая его, должен был бы превратиться в антипротон точно так же, как нейтрон, испустивший p+-мезон, превратился бы в антипротон. Однако этого не происходит. Точно так же невозможен обмен заряженными p-мезонами между протонами, так как при поглощении протоном p+-мезона возникал бы протон с зарядом 2.

Оказалось, что процессы обмена у одинаковых нуклонов осуществляются при помощи нейтральных p0-мезонов. Действительно, p0-мезон очень сильно взаимодействует с ядрами. Он имеет массу 264 э.м., т.е. на 7 э.м. легче заряженного p-мезона.

Перейти на страницу:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19