Моделирование в физике элементарных частиц
3. Кварковая модель элементарных частиц
3.1 Существование кварков
Главная идея, высказанная впервые М. Гелл-Манном и Дж. Цвейгом, состоит в том, что все частицы, участвующие в сильных взаимодействиях, построены из более фундаментальных частиц – кварков. Кроме лептонов, фотонов и промежуточных бозонов, все уже открытые частицы являются составными.
Первоначально была введена гипотеза о существованиях трех кварков. Кварки обозначаются буквами u, d, s. Они должны иметь дробные электрические заряды. Первый из них – u-кварк имеет заряд +е, а d- и s-кварки имеют одинаковые заряды, равные -е (где е – модуль заряда электрона). Было предсказано существование четвертого – c-кварка, названного «очарованным». Затем экспериментально были обнаружены частицы, содержащие этот кварк. Впоследствии были предсказаны, а затем и открыты еще более тяжелые b- и t-кварки.
Подобно тому как в опытах Резерфорда по рассеянию a-частиц было обнаружено малое образование внутри атома – атомное ядро, в опытах по рассеянию электронов на протонах и нейтронах сначала было обнаружено пространственное распределение электрического заряда в этих частицах. Затем с увеличением энергии рассеиваемых частиц до 50МэВ удалось установить существование точечных образований в протонах и нейтронах. Так подтвердилась кварковая структура нуклонов.
Все барионы построены из трех кварков. В состав протона входят два u-кварка и один d-кварк. Нейтрон составлен из двух d-кварков и одного u-кварка. В результате заряд протона равен е, а нейтрона – нулю. Античастицы состоят из антикварков. Мезоны построены иначе. Каждый мезон состоит из одного кварка и одного антикварка. Так, p+-мезон содержит u-кварк и d-антикварк, p--мезон составлен из d-кварка и u-антикварка. Все адроны состоят из кварков, но расщепить их на кварки не удалось. Кварки искали и ищут среди материковых пород, отложений на дне океана, в лунном грунте. Но свободные кварки обнаружены не были. Не удалось их получить и с помощью ускорителей элементарных частиц. Конечно, может быть, масса кварков очень велика, а энергия связи в нуклонах огромна. Мощности современных ускорителей не хватает для расщепления протонов и нейтронов на отдельные кварки. А в природе свободных кварков очень мало. Однако сейчас более правдоподобной и привлекательной кажется иная точка зрения. Свободных кварков в природе не существует и не может существовать. Кварки не могут вылетать из адронов. Развивается несколько теорий, объясняющих невозможность разделения адронов на кварки. В основе этих теорий лежит утверждение о том, что межкварковые силы, в отличие от всех других сил в природе, не убывают с расстоянием. При увеличении расстояния они остаются постоянными, а может быть, даже и возрастают. Если это справедливо, то извлечь кварк из адрона нельзя.
Удаление электрона из атома требует энергии порядка 10эВ. Расщепление ядра требует гораздо большей энергии – несколько мегаэлектронвольт. Удаление же одного кварка на расстояние 3 см от протона требует энергии около 1013 Мэв. Этой энергии достаточно для того, чтобы поднять человека на высоту 10 м над Землей. Однако задолго до этого начнет действовать особый механизм рождения частиц. Когда при удалении кварка из нуклона потенциальная энергия достигает достаточно высокого уровня, начнут образовываться за счет этой энергии пары кварк – антикварк. Кварк остается в нуклоне и восстанавливает эту частицу, а антикварк объединяется с удаляемым кварком и образует мезон. Вместо удаления кварка из нуклона происходит рождение мезона. При столкновении частиц высокой энергии, например электрона с позитроном, образуется пара кварк – антикварк. Кварк и антикварк разлетаются в противоположные стороны, и каждый из них рождает множество андронов (преимущественно пионов).
По современным представлениям все лептоны, как и кварки, лишены внутренней структуры. В этом смысле лептоны и кварки могут считаться истинно элементарными частицами. Без учета античастиц сейчас открыто шесть лептонов. Кварков открыто тоже шесть. Существует кварк-лептонная симметрия, которая выражается в том, что в природе встречается шесть лептонов, а все сильно взаимодействующие частицы состоят из шести кварков. При этом можно выделить три поколения лептонов и кварков. Массы частиц возрастают от поколения к поколению.
Стабильное вещество Вселенной, все атомы построены из частиц первого поколения: электронов, u- и d-кварков. Кварки u и d образуют нуклоны и, следовательно, атомные ядра. Электронное нейтрино хотя и не входит в состав атомов, но играет ключевую роль в термоядерных реакциях Солнца и других звезд.
Кварки внутри адронов взаимодействуют друг с другом. Взаимодействие это, очевидно, сильное. Иначе адроны без труда можно было бы расщепить на составляющие их кварки. Теория этих взаимодействий, называемая квантовой хромодинамикой, успешно развивается. Согласно основным идеям квантовой хромодинамики взаимодействие кварков осуществляется посредством обмена особыми частицами – глюонами (от английского glue – клей). Глюоны «склеивают» кварки воедино. Подобно фотонам, глюоны лишены электрического заряда и не имеют массы покоя. При обмене глюонами кварки меняют свой цвет, но не аромат. Например, красный u-кварк, испуская глюон, превращается в зеленый или синий, но не может превратиться в d- или s-кварк. Именно беспрестанный обмен глюонами приводит к тому, что кварки в адронах непрерывно меняют свой цвет, оставляя адрон во все моменты времени бесцветным. Цвет – главная характеристика кварка в сильных взаимодействиях.
Набор глюонов, обеспечивающий перенос всех цветов между всеми кварками, по необходимости оказывается довольно обширным. Согласно предсказаниям теории их должно быть восемь. В то же время электромагнитные взаимодействия обусловлены обменом частицами одного сорта – фотонами, а слабые взаимодействия – обменом тремя сортами промежуточных бозонов: W+, W-, и Z0. В отличие от фотонов, глюоны взаимодействуют друг с другом. Глюоны, как и кварки, в свободном состоянии не существуют.
Перейти на страницу: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19