Реконструкция волоконно-оптической линии связи
2.2. Оптическое волокно. Общие положения
Важнейший из компонентов ВОЛС - оптическое волокно. Для передачи сигналов применяются два вида волокна: одномодовое и многомодовое. Свое название волокна получили от способа распространения в них излучения.
Оптическое волокно (рис. 2.1) состоит изсердцевины, по которой происходит распространение световых волн, и оболочки, предназначенной, с одной стороны, для создания лучших условийотражения на границе раздела «сердцевина - оболочка», а с другой - для снижения излучения энергии в окружающее пространство. С целью повышения прочности и тем самым надежности волокнаповерх оболочки, как правило, накладываютсязащитные упрочняющие покрытия.
Рис 2.1. Общий вид типового ОВ.
Такая конструкция ОВ используется в большинстве оптических кабелей (ОК) в качестве базовой [5]. Сердцевина изготавливается из оптически более плотного материала. Оптические волокна отличаются диаметром сердцевины и оболочки, а также профилем показателя преломления сердцевины, т.е. зависимостью показателя преломления от расстояния от оси ОВ (см. рис 2.3).
Все оптические волокна делятся на две основные группы: многомодовые MMF (multi mode fiber) и одномодовые SMF (single mode fiber). В многомодовых ОВ, имеющих диаметр светонесущей жилы на порядок больше длины волны передачи, распространяется множество различных типов световых лучей - мод. Многомодовые волокна разделяются по профилю показателя преломления на ступенчатые (step index multi mode fiber) и градиентные (graded index multi mode fiber).
2.3. Распространение световых лучей в оптических волокнах
Основными факторами, влияющими на характер распространения света в волокне, наряду с длиной волны излучения, являются: геометрические параметры волокна, затухание, дисперсия.
Принцип распространения оптического излучения вдоль оптического волокна основан на явлении полного внутреннего отражения на границе сред с разными показателями преломления. Процесс распространения световых лучей в оптически более плотной среде, окруженной менее плотной показан на рис. 2.2. Угол полного внутреннего отражения, при котором падающее на границу оптически более плотной и оптически менее плотной сред излучение полностью отражается, определяется соотношением:
, (2.3.1)
где n1 - показатель преломления сердцевины ОВ, n2 - показатель преломления оболочки ОВ, причем n1 > n2. При попадании светового излучения на торец ОВ в нем могут распространяться три типа световых лучей, называемые направляемыми, вытекающими и излучаемыми лучами, наличие и преобладание какого-либо типа лучей определяется углом их падения на границу раздела «сердцевина - оболочка». Те лучи, которые падают на границу раздела под углом (лучи 1, 2 и 3), отражаются от нее и вновь возвращаются в сердцевину волокна, распространяясь в ней и не претерпевая преломления. Так как траектории таких лучей полностью расположены внутри среды распространения — сердцевины волокна, они распространяются на большие расстояния и называются направляемыми.
Лучи, падающие на границу раздела под углами (лучи 4), носят название вытекающих лучей (лучейоболочки). Достигая границы «сердцевина - оболочка», эти лучи отражаются и преломляются, теряя каждый раз в оболочке волокна часть энергии, в связи с чем исчезают вовсе на некотором расстоянии от торца волокна. Лучи, которые излучаются из оболочки в окружающее пространство (лучи 5), носят название излучаемых лучей и возникают в местах нерегулярностей или из-за скручивания ОВ. Излучаемые и вытекающие лучи являются паразитными и приводят к рассеиванию энергии и искажению информационного сигнала.
2.4. Моды, распространяющиеся в оптических волноводах
В общем случае распространение электромагнитных волн описывается системой уравнений Максвелла в дифференциальной форме:
(2.4.1)
где - плотность электрического заряда, и – напряженности электрического и магнитного полей соответственно, – плотность тока, и – электрическая и магнитная индукции.
Если представить напряженность электрического и магнитного поля и при помощи преобразования Фурье [5]:
, (2.4.2)
то волновые уравнения примут вид:
, (2.4.3)
где - оператор Лапласа.
Световод можно представить идеальным цилиндром с продольной осью z, оси х и у в поперечной (ху) плоскости образуют горизонтальную (xz) и вертикальную (xz) плоскости. В этой системе существуют 4 класса волн (Е и Н ортогональны):
поперечные Т: Ez = Нz = 0; Е = Еy; Н = Нx;
электрические Е: Еz = 0, Нz = 0; Е = (Еy , Еz) - распространяются в плоскости (yz); Н = Нx ;
Перейти на страницу: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21