Реконструкция волоконно-оптической линии связи
. (3.3.22)
Коэффициент хроматической дисперсии D стремится к нулю на длине волны приблизительно 1,31 мкм и становится положительным для больших длин волн. Длина волны, при которой D = 0, называется длиной волны нулевой дисперсии .
В стандартном одномодовом волокне влияние волноводного вклада в дисперсию сводится, в основном, к смещению длины волны нулевой дисперсии в длинноволновую область: 1,31 мкм. Важной особенностью волноводной дисперсии является то, что ее вклад в D зависит от параметров оптического волокна. В общем случае, волноводная дисперсия увеличивается при уменьшении размеров сердцевины. Этот факт может использоваться для смещения длины волны нулевой дисперсии [7].
3.3.2. Влияние хроматической дисперсии на работу систем связи
Хроматическая дисперсия ограничивает максимальную дальность передачи цифровых сигналов без восстановления их первоначальной формы. Для того чтобы охарактеризовать дальность передачи вводится понятие «дисперсионной длины», как расстояние, на котором происходит относительное расширение импульса по амплитуде в раз. Оценить дисперсионную длину для сигнала с шириной можно с помощью следующей формулы [7]:
. (3.3.23)
3.4. Поляризационная модовая дисперсия
Стремительное развитие техники оптической передачи информации в последнее десятилетие привело к тому, что поляризационные эффекты в волоконно-оптических линиях связи, еще недавно считавшиеся незначительными, стали играть роль основного фактора, сдерживающего дальнейшее увеличение скорости и дальности передачи информации. Это связано с тем, что ограничения, накладываемые затуханием световых сигналов, и ограничения, накладываемые искажениями световых сигналов из-за хроматической дисперсии, успешно преодолеваются по мере внедрения оптических усилителей и улучшения их характеристик и в результате разработки эффективных методов компенсации хроматической дисперсии. По мере увеличения скорости передачи информации по одному каналу до 10 и 40 Гбит/с и дальности до нескольких тысяч километров даже слабые эффекты поляризационной модовой дисперсии PMD (polarization mode dispersion), накапливаясь, дают заметный вклад в работу системы.
3.4.1. Природа поляризационных эффектов в одномодовом оптическом волокне
Так как свет представляет собой электромагнитную волну, а ее распространение в любой среде описывается уравнениями Максвелла, распространение света может рассматриваться путем определения развития связанных с ним векторов электрического и магнитного полей в пространстве и времени [4]. Здесь r обозначает пространственное положение вектора. Более удобно оперировать с преобразованием Фурье этих векторов (см. ф. 3.3.3). Преобразование Фурье для определяется аналогичным образом.
Поскольку электроны в атоме заряжены отрицательно, а ядро несет положительный заряд, то при действии электрического поля на материал, подобный кварцу, происходит поляризация атомов. Индуцированная поляризация описывается вектором , зависящим от особенностей среды и прилагаемого электрического поля и связанным с вектором и электрической индукцией выражением:
. (3.4.1)
Связь и в оптическом волокне определяется свойствами среды и является причиной важного явления – дисперсии.
Рассмотрим поведение фундаментальной моды, представив электрическое поле световой волны в виде:
, (3.4.2)
где , и - соответственно единичные векторы, причем z – направление распространения света. Данное уравнение имеет два линейно независимых решения, которые соответствуют фундаментальной моде.
Изменяющееся со временем электрическое поле считается линейно поляризованным, если его направление остается постоянным (не зависит от времени). Если электрическое поле, ассоциируемое с электромагнитной волной, не имеет продольной компоненты, поле считается поперечным, в противном случае – продольным. Учитывая это, два линейно независимых решения волнового уравнения представляют линейно поляризованные вдоль осей x и y электрические поля, которые в силу взаимной перпендикулярности называются ортогонально поляризованными составляющими электрического поля или состояниями поляризации SOP (State of Polarization). Любая линейная комбинация этих двух линейно поляризованных составляющих также является решением уравнения и, таким образом, фундаментальной модой. В идеальном изотропном оптическом волокне оба состояния поляризации имеют одну и ту же постоянную распространения, т.е. распространяются с одинаковой скоростью, и в результате прохождения такой среды длительность результирующего импульса остается неизменной. Но в реальных оптических волокнах из-за нарушения круговой симметрии возникает небольшая анизотропия, поэтому, учитывая, что световая энергия распределена между SOP, различие констант распространения вызывает увеличение длительности импульса на выходе ОВ.
Перейти на страницу: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21