Рефераты по Физике

Реконструкция волоконно-оптической линии связи

Страница 11

Результирующая дисперсия складывается из волноводной и материальной и называется хроматической дисперсией. Дисперсию в оптических волокнах принято характеризовать коэффициентом дисперсии или удельной дисперсией, измеряемом в пс/(нм·км). Коэффициент дисперсии численно равен увеличению длительности светового импульса (в пикосекундах), спектральная ширина которого равна 1 нм, после прохождения отрезка ОВ длиной 1 км. Значение коэффициента хроматической дисперсии определяется как D(λ) = М(λ) + N(λ). Удельная дисперсия имеет размерность пс/(нм·км).

Рис. 3.2. Зависимости коэффициентов волноводной, материальной и результирующей хроматической дисперсии от длины волны.

При допущениях, которые исходят из результатов опытов для различных веществ, из выражения (3.2.7) может быть получена приближенная формула зависимости показателя преломления от длины волны:

(3.2.9)

где a, b и c - постоянные, значения которых определяются экспериментально для каждого вещества.

Для одномодового ступенчатого и многомодового градиентного оптических волокон для расчета дисперсии применима эмпирическая формула Селмейера [5]:

(3.2.10)

Коэффициенты А, В, С являются подгоночными и определяются для каждого материала ОВ экспериментальным путем. Тогда удельная хроматическая дисперсия вычисляется по формуле [5]:

(3.2.11)

где - длина волны нулевой дисперсии, новый параметр S0 =8В - наклон нуле­вой дисперсии (размерность пс/(нм2·км), а λ - рабочая длина волны, для которой определя­ется удельная хроматическая дисперсия.

Хроматическая дисперсия связана с удельной хроматической дисперсией простым со­отношением:

(3.2.12)

К уменьше­нию хроматической дисперсии ведет использование более когерентных источников излучения, например лазерных передатчиков, и использование рабочей длины волны более близкой к длине волны нулевой дисперсии.

3.3. Распространение световых импульсов в среде с дисперсией

Электрическое поле линейно поляризованного светового сигнала, распространяющегося в одномодовом волокне, можно описать следующим образом [6]:

, (3.3.1)

где - единичный вектор, - медленно меняющаяся амплитуда (огибающая) светового импульса, представляющая собой комплексный скаляр, который изменяется в направлении z и во времени t, u(х,у) - распределение амплитуды поля в поперечном направлении, - постоянная распространения, - угловая частота.

Распределение амплитуды поля основной моды в поперечном направлении описывается следующим уравнением [6]:

, (3.3.2)

где (ω)- диэлектрическая проницаемость среды.

В отсутствие в волокне нелинейных явлений рассчитать изменение формы светового импульса в процессе распространения вдоль волокна можно, воспользовавшись преобразованием Фурье [6].

Рассмотрим распространение спектральных компонент светового сигнала , получаемых преобразованием Фурье огибающей светового импульса :

, (3.3.3)

где - несущая частота.

Спектральные компоненты удовлетворяют уравнению:

, (3.3.4)

где - коэффициент затухания сигнала, =.

Решение этого уравнения известно и характеризует затухание сигнала и сдвиг фаз, пропорциональный пройденному расстоянию:

,(3.3.5)

где Фурье - образ входного светового сигнала имеет вид:

, (3.3.6)

Для однородного волокна выражение упрощается:

(3.3.7)

Как следует из выражения (3.3.7), в процессе распространения по волокну разные спектральные компоненты приобретают различный фазовый сдвиг, поэтому Фурье - образ выходного сигнала, прошедшего участок однородного ОВ длиной L, имеет вид:

. (3.3.8)

Форма выходного сигнала может быть получена из Фурье - образа обратным преобразованием Фурье:

. (3.3.9)

Искажение световых импульсов при распространения в ОВ можно оценить, разложив постоянную распространения β(ω) в ряд Тейлора около несущей частоты [6]:

, (3.3.10)

где:

(3.3.11)

Выражение (3.3.10), ограниченное первыми четырьмя членами разложения, имеет вид:

Перейти на страницу:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21