Фильтрация газов - Дипломная работа
Здесь а и b связаны с параметрами критического состояния (в критической точке) соотношениями [8]:
. |
(I.1.6) |
Уравнение состояния Вукаловича и Новикова [7]:
. |
(I.1.7) |
Здесь B1, B2 и т.д. – так называемые вириальные коэффициенты весьма сложного вида. Их вычисление производится с учетом ассоциации молекул – объединения под влиянием ван-дер-ваальсовых сил притяжения.
Уравнение состояния Майера [7]:
, |
(I.1.8) |
где: dti=dqi1* .dqin.
Здесь Uпij – взаимная потенциальная энергия i-й и j-й молекул, взаимодействующих по закону центральных сил, qi1, ,qin – обобщенные координаты i-той молекулы, обладающей n степенями свободы.
Уравнение Камерлинг-Оннеса (1901) [8]:
|
(I.1.9) |
где , .
Уравнение Редлиха-Квонга (1949 г.) [8]:
|
(I.1.10) |
Здесь 0,42748·R2·T2,5k/Pk, b = 0,08664·R·Tk/Pk. Уравнение Редлиха-Квонга считается наилучшим двухконстантным уравнением. При его выводе авторы не руководствовались какими-то определенными теоретическими обоснованиями [8]. Это уравнение следует рассматривать как произвольную, но удачную эмпирическую модификацию предшествующих уравнений состояния.
Уравнение Мартина (1967 г.) [8]:
, |
(I.1.11) |
где 27·R2·T2k/(64Pk), b = R·Tk/(8Pk).
1.2. Основные уравнения, описывающие процесс фильтрации газа в пористой среде
В последнее время наблюдается рост интереса к различным термодинамическим эффектам в пористых средах. Это связано с их многообразными практическими приложениями[4,5].
Особую важность упомянутые проблемы имеют в физике нефтегазоносных пластов. Поля давления в нефтегазоносных пластах в условиях разработки, как правило, нестационарны. Дросселирование нефти и газа приводит к проявлению баротермического эффекта – изменению температуры при течении нефти или газа в пористой среде в нестационарном поле давления. Величина барометрического эффекта в отличие от эффекта Джоуля – Томсона, наблюдающегося при стационарном дросселировании, зависит от коллекторских свойств пористой среды, времени, геометрии течения и других факторов. Эти особенности баротермического эффекта обеспечивают возможность его практического применения при исследовании скважин и пластов.
В основу исследований положена полная система уравнений для - той фазы (компонента), описывающих баротермический эффект. Ядром этой системы является уравнение для температуры с учетом термодинамических эффектов высокого порядка [9]
|
(I.2.1) |
где первое слагаемое в левой части уравнения (I.2.1) описывает изменение температуры в пласте со временем, второе – за счет конвекции (перемещения больших объемов газа). Первое слагаемое в правой части ответственно за теплопроводность, второе – за межфракционный теплообмен, третье описывает адиабатический эффект, четвертое – эффект Джоуля-Томсона и пятое – влияние поля тяготения Земли.
Вторым уравнением системы является уравнение неразрывности, которое записывается в виде:
. |
(I.2.2) |
Фильтрация газа подчиняется закону Дарси
. |
(I.2.3) |
К системе добавляется уравнение состояния
. |
(I.2.4) |
Система (I.2.1)-(I.2.4) является нелинейной, кроме того, уравнения (I.2.1)-(I.2.2) являются взаимосвязанными.
Перейти на страницу: 1 2 3 4 5 6 7 8 9 10 11 12 13