Рефераты по Физике

Функции распределении и уравнение Лиувилля

Страница 3

Из этого обсуждения можно сделать следующий вывод: наблю­даемое значение любой макроскопической динамической вeличины есть среднее значение соответствующей микроскопической величины с весом fN:

(12)

Заметим теперь, что информация, заключенная в fN , в действительности оказы-вается излишней. Для всех величин, характери­зующих макроскопическое состояние системы, таких, как плот­ность, гидродинамическая скорость и т. д., величина А (х, v) является функцией положения и скорости очень небольшого числа частиц (скажем, одной, двух и т. д.) по сравнению с полным числом частиц системы. Поэтому весом для функции А в (12) в действи­тельности является интеграл от fN , по всем частицам, за исключе­нием тех, от которых зависит А. Такие интегралы называются приве-денными, s-частичными функциями распределения. Опреде­ляются они формулой:

(13)

Множитель N!/(N-s)! является удобным по следующим причи­нам. Если интерпретировать fN как вероятность, то функция fs определенная без такого множителя, соответствовала бы вероят­ности нахождения определенной частицы 1 в точке (x1,v1), части­цы 2 в точке (x2,v2) и т. д. Однако в больших физических систе­мах из одинаковых частиц все частицы равноправны; данные макроскопические свойства определяются набором частиц в целом независимо от их нумерации. Поэтому удобно умножать интеграл от функции fN на такой множитель, который представлял бы число способов выбора s частиц из полного числа частиц N.

Наиболее важные макроскопические величины выражаются через эти функции так [4, 5]:

Плотность в точке x

(14)

Локальная (гидродинамическая) скорость в точке х

(15)

Локальная плотность энергии в точке x

(16)

Корреляция плотности между точками x и x’

(17)

В дальнейшем будут определены другие средние величины:

В многокомпонентных системах необходимо дополнительно определить приведенные функции распределения. В системе, состоящей из s компонент, имеется s типов одночастичных распределений:

Это обозначение, очевидно, относится к частице 1 типа s. Аналогично имеется всего 1/2s (s + 1) типов двухчастичных распределений:

Эта функция соответствует распределению частицы 1 типа s и частицы 2 типа s’. Обобщение определений (14) — (16) в этом случае приводит к следую­щим соотношениям:

(14a)

Локальная скорость в точке х

(15a)

Локальная плотность энергии в точке х

(16a)

Рассмотрим еще три других типа приведенных функций рас­пределения: приведенную s-частичпую функцию распределения по скоростям,fs ; приведенную s-частичную функцию распреде­ления по координатам, ns; приведенную г-частичиую по скоро­стям и s-частичную по координатам функцию распределения (s¹r).Эти функции определяются следующим образом:

(18)

(19)

(20)

Литература:

1.Р.Балеску “Статистическая механика заряженных частиц.”;

М.,”Мир” 1967г.

Перейти на страницу:  1  2  3