Рефераты по Физике

Экспериментальные термометрические шкалы и методы измерения температур - Курсовая работа

Страница 1

1. Содержание

Введение.

Понятие температуры.

Температурные шкалы.

Экспериментальные (эмпирические) температурные шкалы.

Идеально – газовая шкала температур.

Термодинамическая абсолютная шкала Кельвина.

Международная практическая температурная шкала.

Методы и технические средства измерения температуры

Устройства для измерения температур

Термометры расширения и термометры манометрические

Жидкостные стеклянные термометры

Манометрические термометры

Термоэлектрические термометры

Электрические термометры сопротивления

Бесконтактное измерение температуры

Основные понятия и законы излучения

Пирометры частичного излучения

Оптические пирометры

Фотоэлектрические пирометры

Пирометры спектрального отношения

Пирометры суммарного излучения

Список литературы

Введение.

Существование цивилизации невозможно представить без измерений. Мы сталкиваемся с измерениями различных величин везде - от повседневного быта до сложнейших технических объектов и систем. В России эксплуатируется более одного миллиарда средств измерений, от самых простейших, таких как бытовые часы, термометры или весы, до сложных измерительных комплексов, обеспечивающих высокоточные измерения в навигационных, космических, энергетических и других системах.

Температура – важнейший параметр технологических процессов многих отраслей промышленности. Трудно себе представить область деятельности человека, где бы ни приходилось сталкиваться с температурными процессами. По оценкам отечественных и зарубежных специалистов технические измерения температуры составляют до 50% общего числа измерений. Поэтому качество температурного контроля часто обусловливает успех процесса производства. В связи с этим важнейшими задачами современного приборостроения и современной измерительной техники являются выбор надежных методов измерения температуры применительно к различным производствам, создание приборов необходимой точности, стабильности и быстродействия, а также исследование влияний на результат измерений всей совокупности факторов, сопутствующих измерительному процессу.

Понятие температуры.

Понятие температуры знакомо человечеству с глубокой древности. С тех пор оно существенно не изменилось. Как в древности, так и теперь температура является мерой «нагретости» тела. Взгляды древних ученых и современных расходятся лишь в описании ее сущности. Так в древности люди полагали, что температура есть результат наличия у тела особой невесомой материи – теплорода. Сейчас же известно, что температура есть мера внутренней энергии тела – энергии, обусловленной хаотическим движением молекул (частиц из которых состоят тела).

Понятие температуры легко ввести с помощью следующего наглядного эксперимента. Пусть у нас имеются два тела. Одно – более нагретое, другое – менее. Если мы два этих тела приведем в тесный контакт и изолируем от внешних тел, то мы заметим, что в системе происходят изменения: более нагретое тело отдает избыток имеющейся у него внутренней энергии и охлаждается, менее нагретое тело получает эту энергию и его температура повышается. Процесс будет идти до тех пор, пока температуры обоих тел не сравняются. Следовательно, температура является показателем внутренней энергии тела: чем больше внутренняя энергия у тела, тем выше его температура. Температура тел – величина, полностью определяющая интенсивность теплообмена и указывающая направление передачи энергии от одного тела к другому.

Более строгое определение температуры таково:

Температура – статистически формирующаяся термодинамическая величина, определяемая уровнем внутренней энергии тела. Носителями внутренней энергии тела, как уже было отмечено, являются атомы и молекулы тела, кинетическая энергия которых определяет температуру. Например, температура идеального газа, взаимодействие между молекулами которого не учитывается, связана с температурой следующим соотношением:

(1) , где - квадрат средней скорости молекул, m – их масса, k – постоянная Больцмана.

Распределение кинетической энергии поступательного движения молекул описывается распределением Максвелла для кинетических энергий молекул (2) .

Кинетическая энергия вращательного движения молекул газа и колебательного движения атомов в кристаллической решетке твердого тела подчиняются аналогичным закономерностям. При интенсивных химических и ядерных реакциях, в ходе которых за небольшие промежутки времени выделяются колоссальные количества тепловой энергии, кинетическая энергия различных видов движения может быть распределена неравномерно. Для такого неравновесного состояния нет однозначного понятия температуры. В таких случаях различают неравновесные температуры: поступательную, колебательную, и вращательную, которые не равны друг другу. В процессе соударений молекул происходит обмен их импульсов и выравнивание распределения энергии между ними, т.е. устанавливается равновесное состояние, при котором все формы кинетической энергии ансамбля молекул и атомов тела характеризуются одинаковыми значениями температуры. Такую равновесную температуру называют термодинамической.

Из выражений (1) и (2) видно, что температура – статистическая величина, появляющаяся в результате анализа поведения большого числа частиц. Поэтому применительно к одной или нескольким молекулам понятия температуры нет. Нельзя говорить о температуре одной молекулы. Точно так же не имеет смысла говорить о температуре в некоторой точке данного тела. Можно лишь говорить о температуре, характеризующей состояние вещества внутри некоторого объёма тела.

Так как температура является мерой кинетической энергии молекул, а, следовательно, и их скорости, то должен существовать верхний предел температур встречающихся в природе. Из теории относительности известно, что скорость движения не может быть больше скорости света(c ~ 3*108м/с). Поэтому получается, что «потолок» температур порядка 1012К. И действительно наблюдаемые в природе температуры находятся внутри интервала от 0 до 1012К.

Перейти на страницу:  1  2  3  4  5  6  7  8  9  10  11