Рефераты по Физике

Экспериментальные термометрические шкалы и методы измерения температур - Курсовая работа

Страница 5

Что касается приведенного выше рассуждения, то, как уже отме­чалось выше, оно доказывает лишь, что абсолютная термодинами­ческая температура есть величина одного знака. Абсолютные темпе­ратуры двух тел не могут отличаться знаками. Какой знак следует взять — положительный или отрицательный — это вопрос соглаше­ния. Условились температуру основной реперной точки, а с ней и все абсолютные температуры считать положительными. Можно бы­ло бы поступить наоборот. Тогда все абсолютные температуры стали бы отрицательными.

6. В квантовой статистической физике вводится обобщение по­нятия температуры. Некоторые квантовые системы могут нахо­диться в состояниях, которые формально характеризуются как со­стояния с отрицательными абсолютными температурами. Это не противоречит термодинамике, так как последняя определяет температуру лишь для термодинамически равновесных состояний. Состояния же с отрицательными абсолютными температурами, рассматриваемые в статистической физике, термодинамически не­равновесны. К ним обычное термодинамическое понятие темпера­туры неприменимо.

Докажем теперь, что абсолютная термодинамическая шкала температур тождественна с абсолютной шкалой идеально - газового термометра. (Температуру по шкале такого термометра по-прежнему будем обозначать буквой Т.) Для доказательства осуществим цикл Карно, взяв в качестве рабочего тела идеальный газ. Для простоты будем предполагать, что количество газа равно одному молю. Вычислим сначала количество теплоты Q1; отданное нагревателем на верхней изотерме. По первому началу δQ = dU + PdV. Так как для идеального газа внутренняя энергия U зависит только от температуры, то на изотерме due = 0, а, следовательно,

Интегрируя это выражение, находим

При адиабатическом расширении газ тепла не получает. Поэтому величина Q1 полное количество теплоты, отданное нагревателем за один цикл. Аналогично вычисляется количество теплоты Q2, полученное холодильником за тот же цикл:

Следовательно,

Логарифмический множитель в правой части этого соотношения равен единице.

Действительно, если γ = СP/CV не зависит от температуры, то в этом проще убедиться с помощью уравнения адиабаты в форме TVγ-1 = const. Применив это уравнение к адиабатам, получим

Почленное деление приводит к соотношению V2/V1 = V3/V4. Этим соотношением наше утверждение доказано. Но приведенное соотношение справедливо и для таких идеальных газов, у которых величина γ зависит от температуры. Для доказательства замечаем, что

при адиабатическом расширении или сжатии

Отсюда

Теплоемкость Сv идеального газа зависит только от температуры. Поэтому при интегрировании последнего уравнения вдоль адиабат получатся одинаковые результаты:

Отсюда

что и доказывает наше утверждение. Следовательно,

Сравнивая это соотношение с (31.7), получаем

Из этого соотношения следует, что термодинамическая шкала тем­ператур станет тождественной с соответствующей температурной шкалой идеального термометра, если в обоих случаях температуре основной реперной точки (или разности температур двух основных реперных точек) приписать одно и то же значение. Поскольку так и поступают на практике, тождественность обеих температур­ных шкал доказана: Т = θ. Поэтому в дальнейшем термодинамическую и идеально-газовую температуру мы будем обозначать одной и той же буквой Т. Подчеркнем еще раз, что тождественность обеих температурных шкал имеет место для любых идеальных газов, независимо от того, зависит или не зависит их теплоемкость Cv от температуры.

Международная практическая температурная шкала.

Цикл Карно практически никогда не реализуется. А необходимость сравнения результатов измерения температур, проведённых в разных странах, привела к созданию Международной практической температурной шкалы. Впоследствии эта шкала уточнялась. Последний раз это было сделано в 1968 г. Уточнённая в 1968 г. шкала получила название МПТШ – 68.

Международная практическая температурная шкала основана на двенадцати хорошо воспроизводимых точках фазовых переходов, которым присвоены определённые значения температур (первичные реперные точки). Температуры этих точек:

Реперные точки МПТШ – 68

Температура, К

Тройная точка Н2

13,81

Точка кипения Н2 при 25/75 атм.

17,042

Нормальная точка кипения Н2

20,28

Тройная точка О2

54,361

Тройная точка Аr

83,798

Точка кипения О2

90,188

Тройная точка Н2О

273,16

Точка кипения Н2О

373,15

Точка затвердевания Sn

505,1181

Точка затвердевания Zn

692,73

Точка затвердевания Ag

1235,08

Точка затвердевания Au

1337,58

Перейти на страницу:  1  2  3  4  5  6  7  8  9  10  11