Лазеры на свободных электронах
Ондулятор изготовлен из сверхпроводящей бифилярной спиральной обмотки; для отклонения электронного пучка от зеркал (рис. 4) использовалось продольное магнитное поле 1 кГс. В статье Элиаса и др. сообщалось о том, что зарегистрировано спонтанное излучение из ондулятора на длине волны 10,6 мкм при энергии W»24 МэВ и усиление около 7 % сигнала от TEA С02-лазера с плотностью мощности 140 кВт/см2, причем была получена всем теперь знакомая асимметричная кривая усиления. Этот эксперимент был повторен на накопителе АСО (Орсе, Франция) при энергии 150 МэВ . На рис. 5 показано очень точное соответствие между коэффициентом усиления ЛСЭ и производной спектра спонтанного излучения (аргоновый лазер, 4880 ). После увеличения импульсного тока SCA от 70 мА до 2,6 А стало возможным продемонстрировать генерацию лазера на длине волны 3,4 мкм, когда энергия электронов была 43,5 МэВ. Превышение импульсной мощности над уровнем мощности спонтанного излучения было порядка 108. При коэффициенте пропускания зеркал 1,5 % в резонаторе зарегистрирована мощность ~500 кВт.
Рис. 4. Схема Станфордского лазера на свободных электронах в режиме генератора. Около зеркал, кроме поля ондулятора, использовалось ведущее поле для ввода и вывода электронного пучка. © 1977 APS.
Рис. 5. Сравнение кривых усиления ЛСЭ (аргоновый лазер, 4880 А), измеренного в двух отдельных экспериментах (сплошные линии), наложенных на производную спектра спонтанного излучения (пунктирная кривая). Максимальное усиление равно 3·10-4; использовался сверхпроводящий ондулятор с периодом l0= 4 см. © 1982 North-Holland.
На рис. 6 для сравнения приведен спектр мощности ниже () и выше порога генерации, из которого видно, что оптический резонатор значительно сужает ширину линии. Все эксперименты были выполнены для двухволнового режима ЛСЭ, поскольку wpT~0,1.
Особенно большую ценность имеют дополнительные экспериментальные результаты, полученные Станфордской группой, поскольку они обеспечивают базу для разработки надежной теории. Один из результатов (рис. 7) связан с временем “включения” генератора. Это время оказалось не только удивительно большим (~30 мкс, несколько сотен проходов оптического пучка), но и было обнаружено, что время включения и мощность выходного излучения очень чувствительны к расстоянию между зеркалами резонатора (рис. 8). Изучение времени нарастания мощности излучения в начале импульса генератора позволило оценить коэффициент усиления малого сигнала за проход, который оказался равным 6—10%.
Рис. 6. Сужение спектральной линии излучения ЛСЭ выше и ниже порога генерации. © 1977 APS.
Рис. 7. Форма импульса излучения ЛСЭ, показывающая задержку времени включения генератора и времяни нарастания; время на оси абсцисс отсчитывается от момента выстрела электронного пучка. © 1982 Addison-Wesley.
Рис. 8. Зависимость средней выходной мощности ЛСЭ от расстройки длины резонатора. © 1982 Addison-Wesley.
Рис. 9. Влияние излучения ЛСЭ на энергетический спектр электронов. © 1977 Addison-Wesley.
Были проведены измерения временных характеристик электронного и оптического спектров. Ширина распределения электронов по импульсам возрастает примерно на 1 % при включении лазера (в качестве примера на рис. 9 приведен один из предыдущих результатов, из которого видно, что центр тяжести кривой смещен примерно на 0,1 % относительно начальной энергии электрона). Мы видим, что спектр является асимметричным. После первоначального запуска лазера среднее значение оптической длины волны, по существу, сохраняется постоянным, но все еще некоторые особенности оптического импульса нуждаются в экспериментальной проверке. Недавно были проведены эксперименты, в которых ширина оптического импульса измерялась с помощью автокорреляционной схемы и генерации второй гармоники в кристалле LiNbO3. Когда длина резонатора была точно синхронизирована с протяженностью сгустка, наблюдался импульс ЛСЭ длительностью 1,5 пс при импульсной мощности около 400 кВт. При изменении длины резонатора было зарегистрировано увеличение ширины оптического импульса и уменьшение ширины спектральной линии излучения.
В связи с исследованиями, проводимыми в Станфорде на SCA, необходимо упомянуть об успешных экспериментах Лаборатории передовой технологии и инженерных наук фирмы “TRW” с ЛСЭ-генератором, в котором используется многокомпонентный ондулятор. Этот эксперимент отличает наличие очень хорошей диагностической и контрольно-измерительной аппаратуры. На однородном и неоднородном вариантах ондулятора была получена средняя мощность излучения 10 Вт на длине волны 1,6 мкм. Кроме того, во время генерации было обнаружено интенсивное излучение третьей гармоники на длине волны около 0,5 мкм. Как и можно было предполагать, это коротковолновое излучение оказалось чрезвычайно чувствительным к регулировке длины резонатора.
Применения ЛСЭ
Краткий анализ спектра (рис. 10) показывает, что ЛСЭ должны быть наиболее перспективными для той спектральной области, для которой разработано очень немного источников когерентного излучения, например для субмиллиметрового и УФ диапазонов.
Пока еще рано сравнивать ЛСЭ с более высокоразвитыми ЛЭСлазерными системами, поскольку для них еще мало что сделано, в области специальных источников питания и ускорительных установок. Однако ясно, что в субмиллиметровой области спектры, ЛСЭ займут не больше места, чем обычные субмиллиметровые молекулярные лазеры. Даже в ближнем ИК диапазоне и видимой области спектра ЛСЭ могут конкурировать с традиционными лазерами только в тех случаях, когда важную роль играют перестройка частоты, выходная мощность или КПД.
Перейти на страницу: 1 2 3 4 5 6 7 8 9 10 11