Рефераты по Физике

Методы расчета электрических полей (конспект лекций)

Страница 1

1. Основные уравнения электростатического поля

Прежде чем приступить к изложению численных методов расчета электростатического поля, запишем основные уравнения, устанавливающие связи между вектором напряженности электрического поля , вектором электрического смещения и истоками электрического поля (т.е. зарядами). Поскольку в данной работе рассматривается только электростатическое поле, то будем считать, что эти векторы, так же как и заряды, являются функциями пространственных координат, но не функциями времени. Кроме того, мы ограничимся здесь рассмотрением системы уравнений для неподвижных сред, предполагая, что все находящиеся в них тела неподвижны.

Распределение электрического поля в пространстве определяется одним из уравнений Максвелла, устанавливающим связь между вектором электрического смещения и истоками поля:

. (1.1)

Согласно уравнению (1.1) силовые линии вектора смещения начинаются и закачиваются на зарядах, плотность r которых стоит в правой части уравнения (1.1).

Уравнение (1.1) должно быть дополнено соотношением между векторами поля и диэлектрической проницаемостью среды . Условимся в дальнейшем считать, что значения , заданные в каждой точке поля, остаются постоянными во времени, не зависят от напряженности поля, но могут быть кусочно-постоянными в пространстве, т.е. могут изменяться скачком при переходе из одной среды в другую, оставаясь постоянными в пределах каждой среды. Тела с остаточной поляризованностью, а также анизотропные среды, из нашего рассмотрения исключаются. При этих условиях для каждого момента времени имеем

, (1.2)

где =8,8510-12 Ф/м – электрическая постоянная.

Кроме того, уравнения (1.1) и (1.2) необходимо дополнить граничными условиями для векторов и .

Так как значения параметра e могут изменяться скачком при переходе через поверхность раздела двух сред, то на этих поверхностях теряют смысл пространственные производные (div) в уравнении (1.1). На поверхностях раздела должны удовлетворятся следующие граничные условия:

, (1.3)

т.е. при переходе из среды 1 в среду 2 тангенциальная составляющая вектора напряженности электрического поля сохраняется, если плотность объемного заряда r конечна;

, (1.4)

т.е. при переходе из среды 1 в среду 2 нормальная составляющая вектора электрического смещения изменяется на величину плотности поверхностного заряда s на границе раздела.

В уравнениях (1.1)¸(1.4) предполагается, что вектор нормали к границе раздела направлен из 1-й среды во 2-ю.

Рассмотрим поведение электрического поля на границе раздела “диэлектрик-проводник”. Такие задачи типичны для расчета электрического поля, создаваемого в диэлектриках высоковольтными и заземленными металлическими (проводящими) частями электроэнергетического оборудования. При этом , и напряженность электрического поля во 2-й среде с большим значением диэлектрической проницаемости и проводимости (проводнике) оказывается близкой к нулю, а весь заряд проводящих частей конструкций оказывается распределенным по их поверхностям. Тогда на границе раздела двух сред тангенциальная составляющая вектора напряженности электрического поля равна нулю

, (1.5)

а нормальная составляющая определяется как

, (1.6)

где s – поверхностная плотность заряда на поверхности проводника.

Электростатическое поле.

В рассматриваемых здесь условиях (электрическое поле неизменно во времени, его источники неподвижны) определенный интеграл вектора напряженности электрического поля

вдоль линии, соединяющей некоторые точки A и B, не зависит от выбора пути интегрирования. Этот интеграл называется электрическим напряжением между точками A и B.

В таком случае вводится функция координат , называемая скалярным потенциалом электрического поля, разность значений которой в точках A и B равна напряжению между этими точками, т.е.

,

Тогда потенциал поля можно найти как неопределенный интеграл

.

Это позволяет дать точное определение скалярного потенциала как функции, у которой взятая со знаком минус частная производная по некоторому направлению равна составляющей вектора напряженности электрического поля в этом направлении. Отсюда следует, что вектор напряженности электрического поля и скалярный потенциал j связаны соотношением

. (1.7)

В таком случае, если в некотором электрическом поле известно распределение потенциала в пространстве, то вектор может быть определен по трем своим составляющим. Так, например, в декартовых координатах, если , то

Перейти на страницу:  1  2  3  4  5