Приборы с акустическим переносом заряда
С помощью фотолитографии наиболее часто необходимо получать проводящую структуру на поверхности диэлектрического звукопровода. Существует два варианта этого процесса. В одном из них используется вакуумное напыление металлической пленки на рельеф резиста с последующим удалением резиста. В этом случае проводящая структура образуется на местах, свободных от резиста после проявления (негативная структура — рис. 5.5.1).
В другом известном методе необходимый рисунок на металле получают химическим травлением металла через защитный слой фоторезиста (позитивная структура). На подложку 1 (рис. 5.5.2) осаждается пленка металла 2, которая: покрывается слоем фоторезиста, образующего при фотолитографии защитный рельеф 3, соответствующий требуемой структуре изображения.
Трапецевидная форма сечения резистивного рельефа об-; разуется из-за расхождения светового потока при экспонировании и подтраве при проявлении. В результате травления металлическая пленка остается лишь на участках, защищенных фоторезистом, после удаления которого на подложке остается лишь проводящая структура.
Химическое травление позволяет получать линии шириной не менее 4—5 мкм. Ионное травление позволяет свести эту величину к 1—2 мкм. Промывка подложки с полученным на ней проводящим рельефом завершает изготовление блока акустоэлектронного устройства. Затем следуют операции предварительного контроля, установки в корпус, приварки выводов и окончательного контроля механических и электрических параметров.
Практическое воплощение конструкции устройств на УПЩ связано с разработкой технологических процессов их изготовления, которые, хотя и основываются на базовых процесса микроэлектроники, но имеют свои специфические особенности. В частности, они должны обеспечивать на порядок более высокую точность выполнения рисунка встречно-штыревых преобразователей устройств на УПВ, обработку поверхностей пьезоподложек с высокой чистотой и плоскостностью, высококачественное напыление пленок материалов с разными физико-химическими свойствами. Первым важным этапом при конструировании акустоэлектронных устройств на УПВ является выбор материала подложки. Хотя в настоящее время существует много пьезоди-электриков, однако наиболее часто употребляются монокристаллический кварц, ниобат лития, германат висмута и поляризованная пьезокерамика горячего прессования или горячего литья. Материал подложки до некоторой степени определяет технологическую схему изготовления акустоэлектронного устройства. Эта схема всегда включает в себя такие основные этапы:
— изготовление звукопровода;
— изготовление фотошаблона согласно расчетам;
— изготовление акустической интегральной схемы;
— монтаж устройства.
Специфика конструкции акустоэлектронных радиокомпонентов накладывает отпечаток на структуру операций практически всех этапов технологического процесса. Широкий набор материалов, применяемых для изготовления звукопровода, требует гибкости механической обработки. Фотошаблоны акустоэлектронных структур по размерам могут в несколько раз превышать размеры фотошаблонов ИС при более сложной структуре изображения.
Металлизация звукопроводов акустоэлектронного устройства связана с рядом сложных технических проблем. Во-первых, это обеспечение адгезии металла покрытия с материалом звукопровода. Само нанесение металла на поверхность звукопровода большой длины требует создания и освоения новых технологических приемов и операций. Те же трудности возникают и при нанесении фоторезиста на звукопроводы больших размеров. Совмещение шаблона со звукопрово-дом произвольной формы и экспонирование изображения также затруднены произвольными формами звукопроводов. В процессе травления металлической пленки недопустимо подтравливание рабочей поверхности звукопроводов. В связи с этим требуется тщательный подбор травителей для каждого из материалов, применяемых для изготовления звукопровода. Перечисленные особенности технологического процесса изготовления акустоэлектронных устройств далеко не исчерпывают всей его специфики.
На этапе экспериментальных исследований акустоэлектронных устройств применяются самые разнообразные технологические процессы, основной задачей которых является оперативное изготовление опытных образцов. При этом к технологическому процессу не предъявляется стрем их требований по минимизации трудоемкости и повторяемости параметров изготовляемых изделий. Переход от изготовления изделий для лабораторных исследований к их серийному выпуску требует строгого упорядочения технологического процесса, оптимизации его с точки зрения основных производственных критериев серийного производства.
Для таких мелкомасштабных структур, где обычная фотолитография уже не обеспечивает достаточного разрешения, необходимо применять методы электронолитографии и рентгенолитографии. Эти способы в настоящее время начали входить в технологические схемы изготовления акустоэлектронных устройств СВЧ диапазона. Они позволяют изготовлять встречно-штыревые преобразователи с шагом меньше 1 мкм и достигать рабочих частот гигагерцевогодиапазона.
Литература
- Кравченко А.Ф. Физические основы функциональной электроники: Учебное пособие. - Новосибирск: Изд-во Новосиб. ун-та, 2000.
- Щука А.А. Функциональная электроника: Учебник для вузов: - М.: МИРЭА, 1998.
- Микроэлектроника и полупроводниковые приборы. Сб. статей.// Под ред. А.А. Васенкова и Я.А. Федотова. Вып. 10 - М.: Радио и связь, 1989.
- Росадо " Физическая электроника и микроэлектроника", М.:Высшая школа, 1991, 351 с.
- Литовченко В.Г., Горбань А.П. "Основы физики микроэлектронных систем металл-диэлектрик-полупроводник",Киев, Наукова думка, 1978, 316 с.
- Войцеховский А.В., Давыдов В.Н. "Фотоэлектрические МДП-структуры из узкозонных полупроводников", Томск, Радио и связь, 1990, 327 с.