Заряженная плазма, способы теоретического описания, перспективы исследований
Заключительная часть монографии, глава 3, посвящена изучению вопросов равновесия и устойчивости заряженной плазмы, удерживаемой магнитным полем, в рамках уравнений Власова-Максвелла. Общая методика вывода уравнений, описывающее самосогласованное кинетическое равновесие осесимметричных систем, обладающих собственными равновесным электрическим и магнитным полями изложена в первом параграфе монографии. В параграфах 2-5 рассматривается несколько примеров конкретных равновесных конфигураций плазмы. К ним относятся нерелятивистское равновесие заряженного плазменного столба, помещенного в однородное аксиальное магнитное поле, которое направлено по оси пучка, равновесие релятивистского Е-слоя в конфигурации, аналогичной конфигурации экспериментальной установки “Астрон”, равновесие прямолинейного релятивистского електронного пучка и равновесие частично нейтрализованного электронного кольца, удерживаемого в аксиальном и радиальном направлениях пробочным магнитным полем.
2. Общие методы теоретического описания.
Термин заряженная или «ненейтральная» плазма используется для обозначения системы заряженных частиц, в которой отсутствует полная нейтральность заряда. Для таких систем характерной особенностью является наличие равновесного электрического поля, которое обычно отсутствует в нейтральной плазме. Для определения свойств заряженной плазмы необходимо рассмотреть задачи о следующих физических объектах:
1. Обогащенный электронами плазменный столб, ориентированный вдоль удерживающего однородного внешнего магнитного поля.
2. Релятивистский электронный пучок, распространяющийся т частично нейтрализующем ионном фоне в присутствии магнитного поля или без него.
3. Частично нейтрализованное релятивистское электронное кольцо, удерживаемое магнитным полем.
Не нарушая общности рассмотрения можно предположить, что заряженная плазма в исследуемых системах является бесстолкновительной, т.е. равновесие и устойчивость этих систем рассматриваются за времена, малые по сравнению со средним временем между парными столкновениями. Как было изложено выше, существуют два способа теоретического описания бесстолкновительной плазмы: макроскопическое (гидродинамическое) описание, которое основано на уравнениях Максвелла и моментах кинетического уравнения, и микроскопическое (кинетическое) описание, базирующееся на системе уравнений Власова-Максвелла. В дальнейшем для описания свойств заряженной плазмы могут быть использованы оба этих подхода.
При макроскопическом (гидродинамическом) описании отслеживается эволюция во времени следующих макроскопических параметров плазмы:
- плотности частиц α-ого компонента плазмы
- средней скорости α-ого компонента плазмы
- тензора давления для α-ого компонента плазмы
Эти величины изменяются самосогласованным образом под действием электрических и магнитных полей, которые определяются из уравнений Максвелла. Достоинством такого описания является его простота. В самом деле, если плазма холодная, то неоднородностью давления можно пренебречь, что позволит замкнуть систему уравнений для плотности, средней скорости, Е - электрического В - и магнитного полей, состоящую из уравнений непрерывности, гидродинамического уравнения движения и уравнений Максвелла. Такая модель пригодна как для описания состояния равновесия, так и для исследования устойчивости заряженной плазмы. Поскольку описание является макроскопическим, устойчивость плазмы, очевидно, зависит от таких основных параметров равновесного состояния, как распределение равновесной плотности и распределение равновесной скорости. Целесообразность такого гидродинамического подхода для описания заряженной плазмы обусловлена его простотой. При этом относительно нетрудно учесть и конченые размеры системы. Однако макроскопический (гидродинамический) подход имеет два существенных недостатка. Во-первых, нельзя непосредственно обобщить модель холодной плазмы на случаи, когда проявляются эффекты, связанные с конечной температурой, поскольку, вообще говоря, неизвестно, какое уравнение состояния следует использовать для определения тензора давления. Во-вторых, некоторые явления, как, например, затухание Ландау, а также волны и неустойчивости, связанные со структурой распределения частиц в фазовом пространстве, не могут быть исследованы при гидродинамическом описании как нейтральной, так и заряженной плазмы.
Для учета эффектов, связанных с конечной температурой, при исследовании равновесия и устойчивости заряженной плазмы необходимо использовать кинетически подход. При этом электрические и магнитные поля Е и В и одночастичная функция распределения изменяются самосогласованно в соответствии с уравнениями Власова-Максвелла. В рамках кинетического подхода нетрудно построить самосогласованные равновесные состояния. Кроме того, существует широкий класс плазменных волн и неустойчивостей, зависящих от детальной структуры равновесной функции распределения в пространстве импульсов и выпадающих из рассмотрения в гидродинамической модели холодной плазмы. Следует отметить, что, хотя система уравнений Власова-Максвелла позволяет построить широкий класс неоднородных равновесных состояний, исследовать с их помощью устойчивость таких состояний обычно сложнее, чем при использовании гидродинамического уравнения.
2.1. Кинетическое описание
Эволюция одночастичной функции распределения в конфигурационно-импульсном пространстве описывается релятивистским уравнением Власова, а электрическое Е и магнитное В поля, определяются самосогласованным образом из уравнений Максвелла. Процедура отыскания равновесных состояний определяемых уравнением Власова и уравнениями Максвелла, заключается в приравнивании производной по времени нулю и нахождении стационарных решений, удовлетворяющих исходным уравнениям.
Вообще говоря, во внешнем поле заданной конфигурации может существовать много кинетических равновесий. Все они представляют собой стационарные состояния, которые могут существовать в течение времени, меньшего времени между парными столкновениями. Конкретное равновесное состояние может оказаться неустойчивым, если малые отклонения от него нарастают во времени и пространстве.