Заряженная плазма, способы теоретического описания, перспективы исследований
Анализ устойчивости системы, описываемой набором уравнений Власова-Максвелла, проводится следующим образом. Функция распределения, электрическое и магнитные поля представляются в виде суммы их равновесных значений и возмущений, зависящих от времени. При малых отклонениях от равновесных уравнения Власова-Максвелла допускают линеаризацию. Если возмущения функции распределения, электрического и магнитного полей нарастают – функция распределения является неустойчивой, если же возмущения затухают, то система возвращается к исходному состоянию и является устойчивой. Салон магазин штор диана в краснодаре ashtoria.ru.
2.2 Гидродинамическое описание
Гидродинамическое описание основано на уравнениях Максвелла и моментах кинетического уравнения. Как и в случае кинетической модели, равновесные состояния определяются с помощью требования равенства нулю производной по времени. Полученные макроскопические равновесные состояния для количества частиц, средней скорости, давления, электрического и магнитного полей будут описывать различные равновесные конфигурации плазмы. Анализ устойчивости проводится следующим образом, гидродинамические переменные и макроскопические поля представляются в виде суммы их равновесных значений и возмущений. Линеаризация позволяет замкнуть систему уравнений. Анализ полученных решений для возмущений аналогичен анализу при кинетическом описании. Если возмущения нарастают – равновесие неустойчиво, в противном случае система возвратится к исходному состоянию и будет устойчивой.
3. Основные результаты и перспективы исследований заряженной плазмы
(по результатам конференции NNP-2001)
Международная конференция "Ненейтральная Плазма-2001" (NNP-2001) была проведена с 29 июля по 2 августа 2001 года в Университете Калифорнии в Сан Диего (UCSD) (США) [23].
Основными темами представленных докладов были:
- получение и исследование антиматерии;
- атомные и пылевые кулоновские кристаллы, покоящиеся и движущиеся;
- холодная не нейтральная плазма: вихри, равновесие и динамика.
На конференции были описаны первые эксперименты по получению антиводорода - путем накоплениия позитронов и антипротонов в специальной ловушке. Ранее в Пеннинговскую ловушку захватывались отдельно позитроны (от распада 22Na) и антипротоны (от ускорителя, расположенного в международном исследовательском центре ЦЕРН).
Над этой же проблемой теперь работают, кроме американской, также японская и итальянская группы. Одна из нерешенных задач ближайшего будущего - поиск ловушки для нейтрального антиводорода - она обсуждалась, в частности, доктором Д. Дубином.
По проблеме Вигнеровских кристаллов были представлены работы по гидродинамике кристаллов пылевой плазмы (в частности, эксперимент по гидродинамике в условиях микрогравитации - в космосе), молекулярное моделирование динамики плазменных кристаллов в условиях микрогравитации, моделирование кристаллической структуры, структурных превращений и упругих свойств.
Возможность образования заряженными частицами упорядоченных структур, так называемых плазменных или кулоновских кристаллов [24] в ненейтральной плазме представляет не только исследовательский, но и технологический интерес; так с помощью плазменных кристаллов становится возможным синтез более чистых нанокристаллов, сепарация частиц и т.д. Образование упорядоченных структур наблюдалось в ряде экспериментов, проведенных в различных условиях, в том числе и в космосе [25].
Работы с плазменными кристаллами в ускорителях (где они движутся со скоростями порядка нескольких км/сек), с плазменными кристаллами в линейной ионной ловушке (Пауля) и в Пеннинговской ловушке выявляют различные структуры кристаллов и переходы между этими структурами.
Очень интересны экспериментальные модели землетрясений и "звездотрясений" на плазменных кристаллах в Пеннинговской ловушке.
Высокий научный уровень - и экспериментальный и теоретический - характеризует исследования, проводимые в лаборатории проф. Ф. Дрисколла (США) в области гидродинамики заряженной плазмы (вихри, турбулентный перенос) в Пеннинговской ловушке. Необходимо отметить точное количественное согласие теории и эксперимента для ряда коллективных явлений в плазме в Пеннинговских ловушках. Подобные эксперименты проводятся и в лаборатории проф. И. Кивамото (Япония).
Высокая сложность характеризует два перспективных проекта транспортных систем заряженной плазмы радиоактивных ионов.
Интересную дискуссию вызвали эксперименты T.К. Киллиана по расширению неидеальной плазмы в вакуум – проблема, очевидно, остается нерешенной: экспериментальные результаты ждут объяснения.
4. Заряженная плазма в астрономии
В 2006 году в журнале Science [26] была опубликована статья с результатами исследований уникального радиопульсара PSR1931+24. Характерные для пульсаров строго периодические импульсы радиоизлучения с периодом в 813 миллисекунд в этом объекте наблюдаются не более десяти дней, после чего пульсар «выключается» примерно на месяц. Через 30 – 40 дней цикл повторяется. При этом авторам исследования – группе астрономов под руководством Майкла Крамера и Эндрю Лайна из обсерватории Джодрелл-Бэнк под Манчестером – удалось поймать момент «выключения», которое, как оказалось, происходит почти мгновенно, менее чем за десять секунд. Объяснить столь резкие изменения учёные пока не в состоянии.
При вращении пульсары, как любой вращающийся магнит, теряют энергию и импульс за счёт так называемого магнитодипольного излучения и других процессов. При этом расходуется именно энергия вращения нейтронной звезды, скорость его уменьшается. Астрономы установили, что во «включенном» состоянии вращение замедляется почти в полтора раза быстрее, чем в «выключенном», а значит, наличие пульсирующего излучения как-то связано с энергетическими потерями.
Однако сами по себе радиоимпульсы уносят довольно небольшую энергию, пренебрежимо малую по сравнению с магнитодипольным излучением (его, к сожалению, нельзя непосредственно зарегистрировать на Земле из-за его низкой частоты и больших расстояний до пульсаров).