Рефераты по Физике

Волны в упругой среде

Страница 2

Рассмотрев кратко основные понятия, связанные с волной, перейдем к описательной стороне, т.е. волновому уравнению.

Волновое уравнение.

Математические сведения.

Этот параграф является математическим введением к тому динами­ческому рассмотрению волн, которое будет дано в $2. Рассмотрим произвольную функцию

f(at-bx) (2.3) от аргумента аt—bх. Продифференцируем ее дважды по t:

(2.4)

Здесь штрих означает дифференцирование по аргументу at—bx. Продифференцируем теперь нашу функцию дважды по х:

(2.5)

Сравнивая (2.4) и (2.5), мы убеждаемся, что функция (2.3) удовлетво­ряет уравнению

(2.6)

где

u=a/b.

Легко видеть, что этому же уравнению удовлетворяет произвольная функция

f(at+bx) (2.7) (2.7) аргумента at+bx, а также сумма функций вида (2.3) и (2.7).

Функции (2.3) и (2.7) изображают при положительных a, b пло­ские волны, распространяющиеся, не деформируясь, со скоростью и в сто­рону соответственно возрастающих или убывающих значений х **).

Уравнение (2.6)—дифференциальное уравнение в частных производ­ных, играющее в физике очень важную роль. Оно называется волновым уравнением. В математических курсах доказывается, что оно не имеет решений, отличных от тех, которые могут быть представлены функциями вида (2.3) и (2.7) или суперпозицией таких функций, например,

f1(at - bх) + f2(at+bx).

Всякий раз, когда из физических соображений можно установить, что та или иная физическая величина s удовлетворяет уравнению вида

(2.6а)

мы сможем на основании сообщенных здесь математических сведений за­ключить, что процесс изменений этой величины носит характер плоской, волны, распространяющейся в ту или другую сторону со скоростью и, или суперпозиции таких волн.

Вид функций f1, f2 опре­деляется характером движения источника волн, а также явлениями, происходящими на границе среды.

Пусть источником волн является плоскость х=0, при­чем на этой плоскости величина S колеблется но закону s =Acoswt. В этом случае от плоскости х=0 распространяются вправо и влево волны

s= Acos(wtkx), k =.

Из линейности волнового уравнения следует, что если ему удов­летворяют функции s1, s2,s3, . в отдельности, то ему удовлетворяет также функция

S == S1 + S2 + S3 + .

(принцип, суперпозиции).

Рассмотрим несколько примеров.

а) Волновому уравнению удовлетворяют синусоидальные бегущие волны

s1 = Aсоs(wt — kx),s2= Acos(wt+kx).

На основании принципа суперпозиции волновому уравнению удовлетво­ряет стоячая волна

s=2Acoskx coswt

являющаяся суперпозицией только что рассмотренных синусоидальных бегущих волн.

б) Волновому уравнению на основании принципа суперпозиции удо­влетворяет всякая функция вида

S=

Это—функция вида f(at—bx); она изображает несинусоидальную волну, распространяющуюся без деформации в сторону возрастающих х.

в) Пусть волны S1, S2, имеющие вид коротких импульсов, распростра­няются навстречу одна другой. В некоторый момент моментальный снимок суперпозиции S1 + S2 этих волн имеет вид, показанный на рис. 4,а. Через некоторое время моментальный снимок волны будет иметь вид, показанный на рис. 4, б, – волны пройдут «одна сквозь другую» и притом каждая так, как будто другой не существует.

Упругие волны в стержне.

волновое уравнение.

В предыдущем параграфе мы рассмотрели математическую сторону волнового уравнения. В этом же параграфе я хотел бы на конкретном примере рассмотреть как работает тот математический аппарат.

Рисунок 4

Применим второй закон Ньютона и закон сложения сил к движению куска стержня, заключенного между двумя плоскостями x и х+х. Масса этого куска равна р0S0х, где р0 и S0 – соответственно плотность и сечение в отсутствие деформации. Пусть – смещение центра тяжести рассматриваемого куска. Тогда

слева стоит произведение массы куска на ускорение д­­­2/дt2 его центра тяжести, справа – результирующая внешних сил, действующая на кусок.

Разделим уравнение на S0:

(2.7)

Перейдя к пределу при , получим уравнение

(2.8)

справедливое в каждой точке стержня. Оно указывает, что ускорение данной точки пропорционально частной производной напряжения по ж в этой точке.

Подставляя в (2.8) соотношение (2.7), получим:

(2.9)

Вспомнив теперь формулу , содержащую определение дефор­мации, и подставив ее в (2.9), получаем:

(2.10)

Это—волновое уравнение.Оно указывает, что смещение распростра­няется но стержню в виде волн

(2.11)

Перейти на страницу:  1  2  3  4