Волны в упругой среде
а) Подставляя (6.28) в (6.27), имеем:
P0+=f(+)
разлагая f(+) в ряд по степеням ,
P0+=f()+f’()+1/2f’()()2
Так как P0=f(), то получаем:
=f’()+1/2f’’()()2 . (2.20)
Здесь мы сделаем существенное предположение: будем считать уплотнения и разрежения настолько малыми, что допустимо пренебречь в разложении (2.20) членами, пропорциональными ()2, ()3, . . ., и заменить (2.20) линейным соотношением
=f’()
Тем самым мы ограничиваем себя исследованием волн малой интенсивности.
f’() —постоянный при данных условиях опыта коэффициент, определяемый состоянием среды при равновесии.
б) Объем V0 в результате деформации превращается в объем
V=V0 (1+), (2.21)
так как здесь поперечный размер (в отличие от твердого стержня) остается, постоянным, а длина превращается в . Но произведение плотности на объем, равное массе рассматриваемой порции вещества, не меняется:
Подставляя (2.18) и (2.21), получаем:
Пренебрегая и здесь высшими степенями малой величины , получаем:
Таким образом,
(2.22)
Подставляя, наконец, (2.22) в (2.19), мы получаем волновое уравнение
(2.23)
(2.24)
Отсюда заключаем, что рассматриваемые малые деформации распространяются в виде плоских не деформирующихся волн; скорость распространения (скорость звука) тем больше, чем сильное в данной среде возрастает давление при адиабатическом возрастании плотности; она раина квадратному корню из производной давления по плотности, взятой при значении последней в отсутствие волны ( ).
Случай идеального газа. Идеальным газом называется газ, для которого справедливо уравнение состояния
pV=RT, (2.25)
где p – давление, V—объем одного моля, R—универсальная газовая постоянная, равная 8,3143 эрг/град, T—температура, измеренная по термодинамической шкале («абсолютная температура»), или
где М— масса 1 моля, = M/V— плотность.
Воздух, кислород, азот, водород и многие другие газы при комнатной температуре и давлении порядка атмосферного можно рассматривать с достаточным для акустики приближением как идеальные газы.
Как учит термодинамика, в случае идеального газа соотношение (2.17) имеет вид
(2.26)
где
постоянная величина (С и С — теплоемкости газа соответственно при постоянном давлении и постоянном объеме). Следовательно, здесь
(2.27)
(формула Лапласа).
Еще задолго до Лапласа вопросом о скорости звука в воздухе занимался Ньютон. Он считал, что
(2.26а)
т. е. не учитывал изменения температуры воздуха при распространении в нем звуковой волны, вследствие чего получил для скорости звука соотношение
(2.27а)
Это соотношение можно получить из уравнения (2.24), подставляя в него (2.26а) вместо (2.26).
Для воздуха ( =1,4) при комнатной температуре (20° С, Т =293°) формула Ньютона дает u =290 м/сек, формула Лапласа и =340 м/сек. Сравнивая эти значения с теми, которые дает опыт (гл. V, 3), мы видим, что формула Лапласа, в отличие от формулы Ньютона, хорошо согласуется с опытом. Формула Лапласа хорошо подтверждается на опыте и для других газов (но крайней мере при не очень высоких частотах.
Этим оправдывается предположение о том, что сжатие и разрежение газа в звуковой волне являются практически адиабатическими процессами.
Список использованной литературы.
Горелик, Колебания и волны,
И.В. Савельев, курс общей физики, т.2, М, 1988г.
Б.М. Яворский, А.А. Пинский, Основы физики, т.2, М., 1972г