Рефераты по Физике

Волны в упругой среде

Страница 3

или образует суперпозицию таких волн. Скорость распро­странения этих волн (скорость звука в стержне)

(2.12)

(мы опускаем для краткости индекс 0 у р). Эта скорость тем больше, чем жестче и чем легче материал. Формула (2.12)—одна из основных формул акустики.

Наряду со смещением нас интересуют скорость v = , с которой

.движутся отдельные плоскости х = const (не смешивать с u), деформация инапряжение . Дифференцируя (2.11)по t и но x,получаем:

v=uf’(xut) (2.13a)

=f'(x ut), (2.13б)

=Ef’ (x ut). (2.13в)

Таким образом, смещение, скорость, деформация и напряжение распро­страняются в виде связанных определенным образом между собой неде­формирующихся волн, имеющих одну и ту же скорость и одинаковое на­правление распространения.

На рис. 5 показан пример «моментальных снимков», относящихся к одному и тому же моменту времени, смещения, деформации и скорости в одной и той же упругой волне. Там, где смещение имеет максимум или минимум, деформация и скорость равны нулю, так как они обе пропорцио­нальны производной f'{x ut). Физическая интерпретация здесь оче­видна: около максимума или минимума смещения соседние (бесконечно близкие) точки одинаково смещены и, следовательно, нет ни растяже­ния, ни сжатия; в тот момент, когда смещение достигает максимума (ми­нимума), его возрастание сменяется убыванием (или наоборот).

Сравнивая формулы (2.13а), (2.13в) и принимая во внимание (2.12) мы видим, что

(2.14)

где

(2.15)

есть величина, не зависящая от вида функции f и целиком определяемая свойствами материала. Эта величина называется удельным акустическим сопротивлением материала. Она является, как мы видим, наряду с u его важнейшей акустической характеристикой. Название величины связано с формальной аналогией между уравнениями (2.14) и законом Ома (р аналогично разности потенциалов, v - силе тока).

Упругие волны в газах и жидкостях

Волновое уравнение.

Мы рассматриваем здесь газ или жидкость (так же как твердое тело в предыдущих параграфах) как сплошную непре­рывную среду, отвлекаясь от его атомистической структуры. Под смеще­нием мы здесь понимаем (как и в 1) общее смещение вещества, запол­няющего объем, заключающий в себе очень много атомов, но малый по сравнению с длиной волны.

Будем считать, что рассматриваемый газ или жидкость находятся в очень длинной цилиндрической трубе, образующие которой парал­лельны оси х, и что смещение зависит только от одной координаты х. Мы можем применить к столбу газа или жидкости, заполняющему трубу, те же рассуждения, что и к стержню ( 1). Мы придем, таким образом, к уравнению

(2.16)

где р = — есть давление в газе или жидкости. Здесь — значение плот­ности в состоянии равновесия. Пусть ей соответствует давление р0. Ве­личины р0, не зависят ни от х, ни от t.

Уравнение (2.16) применимо и в случае плоских волн в неограничен­ной жидкой или газообразной среде (можно мысленно выделить цилин­дрический столб, параллельный направлению распространения и при­менить к нему те же рассуждения, что к столбу, заключенному в трубе).

Как известно из термодинамики, р есть функция плотности данной массы газа (или жидкости) и ее температуры. Температура в свою оче­редь изменяется при сжатии и разрежении. Теплопроводность газов и жидкостей очень мала, поэтому можно считать в первом приближении, что при распространении звука процесс сжатия и разрежения каждой части газа или жидкости происходит адиабатически, т. е. без заметного теплообмена с соседними частями. В термодинамике показывается, что в этом случае (если можно пренебречь внутренним трением и некоторыми другими явлениями температура является однозначной функцией плотности , и следовательно, давление также.

При заданной деформации в твердом теле также зависит от температуры. Но в акустике твердых тел это обстоятельство не играет, существенной роли.

В газах и в жидкостях за некоторыми исключениями (например вода, при температуре ниже 4° С) температура растет при сжатии и уменьшается при расшире­нии.

Есть однозначная функция плотности:

p=f(p). (2.17)

Введем обозначения

, (2.18) где и — соответственно изменения давления и плотности при нару­шении равновесия.

Подставляя первую формулу (2.18) в (2.16) и принимая во внимание, что при равновесии давление не зависит от х, т. е.

получаем:

(2.19)

Найдем теперь связь между и деформацией = . Мы сначала выразим через , а затем через :

Перейти на страницу:  1  2  3  4