Общая Физика
e = A/q.
FСТ = E**q, где Е* - напряженность поля сторонних сил.
Величина, равная работе, совершаемой электростатическими и сторонними силами при перемещении единичного «+» заряда, называется падением напряжения (напряжением):
U12 = j1 - j2 + e12.
Участок цепи, на котором не действуют сторонние силы, называется однородным, тогда:
U = j1 - j2.
Участок, на котором на носитель действуют сторонние силы, называется неотнородным.
32. Закон Ома, сопротивление проводников, закон Джоуля – Ленца:
Закон Ома: сила тока, текущего по однородному металлическому проводнику, при отсутствии сторонних сил, пропорциональна падению напряжения U на проводнике.
I = (1/R)*U, т.к. проводник однородный, то U = j1 - j2; R – электрическое сопротивление проводника.
[A] = [Ом]/[B].
Величина сопротивления зависит от формы, размеров и свойств материала проводника. Для однородного цилиндрического проводника:
R = r(l/S), где l – длина проводника, S – площадь поперечного сечения, r - удельное электрическое сопротивление, зависящее от свойств металла.
r = [Ом*м].
В металлах направление векторов Е и j (плотность тока) совпадают. Из этого следует, что
j = (1/r)*E = sE (закон Ома в дифференциальной форме), где s - удельная электрическая проводимость материала.
Закон Джоуля – Ленца:
Когда проводник неподвижен и химических превращений в нем не совершается, работа тока затрачивается на увеличение внутренней энергии проводника, в результате чего проводник нагревается, выделяется тепло:
Q = Uit = /по закону Ома/ = RI2t, закон получил название Джоуля – Ленца.
Если сила тока изменяется со временем, то кол-во теплоты за время t: Q = 0òt RI2dt.
Кол-во тепла в элементарном цилиндрическом объеме:
dQ = RI2dt = ((rdl)/dS)(jdS)2dt = = rj2dVdt, где dV = dS*dl.
Поделив выражение на dV и dt, получим кол-во теплоты, выделевшееся в ед. V за ед. t:
QУД = rj2 – удельная тепловая мощность тока.
33. Закон Ома для для неонородного участка цепи:
На неоднородном участке цепи на носители тока действуют, кроме электрических сил еЕ, сторонние силы еЕ*, способные так же вызывать упорядоченное движение носителей тока. На таких участках:
j = s(E + E*) – закон Ома для неоднородного участка цепи в дифференциальной форме.
Для того, чтобы перейти от дифференциальной формы к интегральной:
Неоднородный участок цепи 1 – 2:
S
1 2
dL
Предположим, что значения j, s, E, E* в каждом сечении, ^ контуру 1–2, одинаковы; векторы j, E и Е* в каждой точке направлены по касательной к контуру.
Спроецировав на элемент контура dl векторы j, E и Е*, получим:
(*) jL = s(EL + EL*), где проекции равуны модулю векторов, взятых со знаком «+» или «¾», в зависимости от направления вектора относительно dL.
Из-за сохранения заряда сила постоянного тока в каждом сечении будет одинаковой, то I = jLS постоянна вдоль контура 1 – 2.
В (*) можно заменить: j = I/S, s = 1/r, то:
I(r/S) = EL + EL*, а по всей длине:
I1ò2(r/S)dL = 1ò2ELdL + 1ò2EL*dL Û
Û IR = j1 - j2 + e12 Û Û I = (j1 - j2 + e12)/R – закон Ома для неоднородного участка цепи.
Если цепь замкнута, т.е. j1 = j2, то: I = e/R, где R – cуммарное сопротивление всей цепи.
34. Разветвление цепи. Правила Кирхгофа:
Узлом называется точка, в которой сходятся более, чем 2 проводника. Токи, текущие к и от одного узла, разноименны.
Первое правило: алгебраическая сумма токов, сходящихся в узле, равна 0:
åIK = 0, что вытекает из закона сохранения заряда (суммарный заряд электрически изолированной системы не может изменяться), то поток вектора j должен быть равен 0.
Второе правило: рассмотрим контур:
() 2
R1 R2
e1 + + e2
¾
¾
() R3 ()
1 ¾ + 3
Перейти на страницу: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21