Аксиоматическое построение основных уравнений теории реального электромагнитного поля
В концепции корпускулярно-полевого дуализма электромагнитных характеристик материи сформулированы физико-математические принципы аксиоматического построения уравнений реального электромагнитного поля, физическое содержание которых представляет собой концептуально новый уровень в развитии основ полевой теории классического электромагнетизма.
Известно [1], что в электромагнетизме базовой физической характеристикой материального тела является его электрический заряд, представление о котором на микроуровне имеет принципиальное дополнение: элементарная частица характеризуется не только зарядом q, кратным заряду электрона |e-|, но и спином s, трактуемым как собственный момент количества движения частицы, величина которого квантована значением h/2, где h - постоянная Планка. Таким образом, локальными (корпускулярными) электромагнитными характеристиками микрочастицы являются электрический заряд, определяющий ее электрические свойства и собственный момент, ответственный за ее магнитные свойства, поскольку истинный магнетизм имеет спиновую природу.
С другой стороны, обратим внимание на основополагающую аксиому философии: «пространство и время есть формы существования материи», означающую невозможность в принципе существования материи вне пространства и времени, соответственно, реализации пространства и времени без материи. Иными словами, характеристики материи и пространства-времени едины и взаимно обусловлены. По нашему мнению, аксиома концептуально обосновывает реальность корпускулярно-полевого дуализма материи, который, казалось бы, отличен только лишь по названию от «корпускулярно-волнового дуализма» частиц микромира в квантовой механике. Формально и здесь и там имеем неразрывную взаимосвязь материи с ее пространственно-временным собственным полем. Однако сущностные различия принципиальны: представления корпускулярно-полевого дуализма основаны на объективном единстве частицы материи и ее поля в реальном пространстве физического вакуума, а в концепции корпускулярно-волнового дуализма материальная частица представляется волной вероятности в абсолютно пустом, абстрактном пространстве.
На базе этой логики приходим к выводу, что и электромагнитные характеристики микрообъектов должны обладать «корпускулярно-полевым дуализмом», благодаря которому указанным выше локальным параметрам частицы соответствует некий полевой аналог в виде ее собственного первичного поля. Такой вывод вовсе не так тривиален, как может показаться на первый взгляд, ведь он относится не к известному электромагнитному полю силового взаимодействия зарядов друг с другом на расстоянии, а к иному, далеко не очевидному, первичному полю микрочастицы. Более конкретно пока можно лишь сказать, что если такое поле действительно реально, то оно обязательно должно быть функционально связано с обычным векторным электромагнитным полем. По этой причине полагаем первичное поле также векторным, где электрическая вектор-компонента порождена зарядом микрочастицы q, а магнитная компонента - удельным (на единицу заряда) моментом n(), кратным (n - натуральное число) кванту магнитного потока [1]. А поскольку электрический заряд и спин выявляются опосредовано измерением характеристик электромагнитного поля, то физически логично считать, что и компоненты первичного поля предполагаемых корпускулярно-полевых пар будут также определяться посредством того же электромагнитного поля.
Как видим, наша основная задача - разобраться далее, что должно представлять собой такое поле, каким образом можно аналитически описать его физические свойства и в итоге аксиоматически построить уравнения функциональной взаимосвязи компонент этого гипотетического поля и с реально наблюдаемыми в настоящее время компонентами электромагнитного поля в виде электрической и магнитной напряженностей.
Можно попытаться уже сейчас поставить вопрос, каким должно быть обсуждаемое первичное поле. Например, известен физически интересный факт, что в волновое уравнение квантовой механики (уравнение Шрёдингера) входит поле векторного магнитного потенциала, которое в принципе не может быть заменено полем вектора магнитной индукции. Вполне возможно, что именно электрическая и магнитная компоненты поля векторного потенциала и есть первичные полевые характеристики микрочастицы, полевой эквивалент ее локальных параметров. Однако сегодня о физических свойствах электромагнитного векторного потенциала известно сравнительно мало, да и вообще пока не ясно, соответствует ли данное предположение действительности. Все это и многое другое мы должны выяснить в процессе проводимых исследований.
Итак, продолжим наши рассуждения. Поскольку компоненты обсуждаемого гипотетического первичного поля есть векторные функции пространственно-временных переменных, то описывающие их поведение дифференциальные уравнения наиболее просто можно получить действием на и пространственной производной первого порядка (оператор «набла») со свойствами вектора и скалярной частной временной производной . При этом естественно возникает принципиальный вопрос о допустимости именно таких математических действий с точки зрения физического содержания получаемых результатов, их адекватности рассматриваемой проблеме.
В сложившейся ситуации воспользуемся чрезвычайно важным замечанием классика электродинамики Дж.К. Максвелла, который настоятельно призывал [2] ответственно относиться к математическим операциям над векторами электромагнитного поля и их физической трактовке. Вот его слова ([2] п. 12): “В науке об электричестве электродвижущая и магнитная напряженности принадлежат к величинам первого класса – они определены относительно линии. . Напротив, электрическая и магнитная индукция, а также электрические токи принадлежат к величинам второго класса – они определены относительно площади”. Как видим, тут конкретно говорится о принципиальных различиях электромагнитных векторов: напряженностей и – линейных (циркуляционных) векторов, соответственно, электрической и магнитной индукций, плотности электрического тока – потоковых векторов. Здесь материальные параметры среды: - электрическая и - магнитная абсолютные проницаемости, - удельная электропроводность.
Перейти на страницу: 1 2 3 4 5 6 7