Упругие волны
Страница 4
w ( t – r/ υ ) = wt – kr +a
(чтобы пройти путь
r, волне требуется время
τ =
r/
υ). Амплитуда колебаний в этом случае, даже если энергия волны не поглощается средой, не остается постоянной — она убывает с расстоянием от источника по закону
1/r. Следовательно, уравнение сферической волны имеет вид
x = cos ( wt + kx +a )
где a — постоянная величина, численно равная амплитуде на расстоянии от источника, равном единице. Размерность а равна размерности колеблющейся величины, умноженной на размерность длины. Для поглощающей среды в формулу (2.10) нужно добавить множитель e–γx.
Напомним, что в силу сделанных предположений уравнение (2.10) справедливо только при r, значительно превышающих размеры источника. При стремлении r к нулю выражение для амплитуды обращается в бесконечность. Этот абсурдный результат объясняется неприменимостью уравнения для малых r.
§ 3. Уравнение плоской волны, распространяющейся в произвольном направлении
Найдем уравнение плоской волны, распространяющейся в направлении, образующем с осями координат x, y, z углы α, β, γ. Пусть колебания в плоскости, проходящей через начало координат (рис. 3.1), имеют вид
x = a cos ( wt + a )
Возьмем волновую поверхность (плоскость), отстоящую от начала координат на расстояние l. Колебания в этой плоскости будут отставать от колебаний (3.1) на время τ =l/υ:
x = a cos [ w( t − ) + a ] = a cos ( wt − kl + a ).
(k = ω/υ; см. формулу (2.7)).
Выразим l через радиус-вектор точек рассматриваемой поверхности. Для этого введем единичный вектор n нормали к волновой поверхности. Из рис. 3.1 видно, что скалярное произведение n на радиус-вектор r любой из точек поверхности равно l:
nr =rcos φ=l.
Заменим в (3.2) l через
nr:
x = a cos ( wt − knr + a )
Вектор
k =kn,
равный по модулю волновому числу k
=2π/λ и имеющий направление нормали к волновой поверхности, называется волновым вектором. Таким образом, уравнение (3.3) можно представить в виде
x ( r, t ) = a cos ( wt − kr + a )
Мы получили уравнение плоской незатухающей волны, распространяющейся в направлении, определяемом волновым вектором k. Для затухающей волны нужно добавить в уравнение множитель e–γl = e–γ nr.
Функция (3.5) дает отклонение от положения равновесия точки с радиусом-вектором r в момент времени l (r определяет равновесное положение точки). Чтобы перейти от радиуса-вектора точки к ее координатам х, у, z, выразим скалярное произведение kr через компоненты векторов по координатным осям:
kr = kxx + kyy + kzz.
Тогда уравнение плоской волны примет вид
Перейти на страницу: 1 2 3 4 5 6 7 8 9 10