Рефераты по Физике

Упругие волны

Страница 8

В случае поперечной волны для плотности энергии получается та­кое же выражение.

(6.6)

Из (6.5) следует, что плотность энергии в каждый момент времени в разных точках пространства различна. В одной и той же точке плотность энергии изменяется со временем по закону квад­рата синуса. Среднее значение квадрата синуса равно 1/2. Соот­ветственно среднее по времени значение плотности энергии в каж­дой точке среды равно

Плотность энергии (6.5) и ее среднее значение (6.6) пропорцио­нальны плотности среды ρ, квадрату частоты ω и квадрату ампли­туды волны а. Подобная зависимость имеет место не только для незатухающей плоскости волны, но и для других видов волн (плос­кой затухающей, сферической и т. д.).

(6.7)

Итак, среда, в которой распространяется волна, обладает до­полнительным запасом энергии. Эта энергия доставляется от ис­точника колебаний в различные точки среды самой волной; следо­вательно, волна переносит с собой энергию. Количество энергии, переносимое волной через некоторую поверхность в единицу вре­мени, называется потоком энергии через эту поверх­ность. Если через данную поверхность переносится за время dt энергия dW, то поток энергии Φ равен

Поток энергии – скалярная величина, размерность которой равна размерности энергии, деленной на размерность времени, т. е. сов­падает с размерностью мощности. В соответствии с этим Φ измеря­ется в ваттах, эрг/с и т. п.

Поток энергии в разных точках среды может быть различной интенсивности. Для характеристики течения энергии в разных точках пространства вводится векторная величина, называемая плотностью потока энергии. Эта величина численно равна потоку энергии через единичную площадку, помещенную в данной точке перпендикулярно к направлению, в котором пере­носится энергия. Направление вектора плотности потока энергии совпадает с направлением переноса энергии.

Пусть через площадку , перпендикулярную к направлению распространения волны, переносится за время Δt энергия ΔW. Тогда плотность потока энергии равна

(6.8)

(см. (6.7)). Через площадку (рис. 6.1) будет перенесена за время Δt энергия ΔW, заключенная в объеме цилиндра с основа­нием и высотой υΔt (υ – фазовая скорость волны). Если размеры цилиндра достаточно малы (за счет малости и Δt) для того, чтобы плотность энергии во всех точках цилиндра можно было считать одинаковой, то ΔW можно найти как произведение плотности энергии w на объем цилиндра, равный υΔt:

Подставив это выражение в формулу (6.8), получим для плот­ности потока энергии:

(6.9)

(6.10)

(6.11)

(6.12)

Наконец, введя вектор v, модуль которого равен фазовой скорости волны, а направление совпадает с направлением распростране­ния волны (и переноса энергии), можно написать

j = wv

Рис.6.2

Рис.6.1

Мы получили выражение для вектора плотности потока энер­гии. Этот вектор был впервые введен в рассмотрение выдающимся русским физиком Н. А. Умовым и называется вектором Умова. Вектор (6.10), как и плотность энергии w, различен в разных точках про-

Перейти на страницу:  1  2  3  4  5  6  7  8  9  10