Ядерный магнитный резонанс (ЯМР)
1. Введение.
1.1. Из истории спектроскопии магнитного резонанса.
До недавнего времени основой наших представлений о структуре атомов и молекул служили исследования методами оптической спектроскопии. В связи с усовершенствованием спектральных методов, продвинувших область спектроскопических измерений в диапазон сверхвысоких (примерно 103 - 106 МГц; микрорадиоволны) и высоких частот (примерно 10-2 - 102 МГц; радиоволны), появились новые источники информации о структуре вещества. При поглощении и испускании излучения в этой области частот происходит тот же основной процесс, что и в других диапазонах электромагнитного спектра, а именно при переходе с одного энергетического уровня на другой система поглощает или испускает квант энергии. Разность энергий уровней и энергия квантов, участвующих в этих процессах, составляют около 10-7 эВ для области радиочастот и около 10-4 эВ для сверхвысоких частот. Существование ядерных моментов впервые было обнаружено при изучении сверхтонкой структуры электронных спектров некоторых атомов с помощью оптических спектрометров с высокой разрешающей способностью. Работа в Туле
Сверхтонкая структура атомных спектров навела Паули в 1924 г. на мысль о том, что некоторые ядра обладают моментом количества движения (угловым моментом), а, следовательно, и магнитным моментом, взаимодействующим с атомными орбитальными электронами. Впоследствии эта гипотеза была подтверждена спектроскопическими измерениями, которые позволили определить значения угловых и магнитных моментов для многих ядер. Под влиянием внешнего магнитного поля магнитные моменты ядер ориентируются определенным образом, и появляется возможность наблюдать переходы между ядерными энергетическими уровнями, связанными с этими разными ориентациями: переходы, происходящие под действием излучения определенной частоты. Квантование энергетических уровней ядра является прямым следствием квантовой природы углового момента ядра, принимающего 2I + 1 значений. Спиновое квантовое число (спин) I может принимать любое значение, кратное 1/2; наиболее высоким из известных значений I (≥7) обладает 17671Lu. Измеримое наибольшее значение углового момента (наибольшее значение проекции момента на выделенное направление) равно Iħ, где ħ=h/2π, а h - постоянная Планка. Значения I для конкретных ядер предсказать нельзя, однако было замечено, что изотопы, у которых и массовое число, и атомный номер четные, имеют I = 0, а изотопы с нечетными массовыми числами имеют полуцелые значения спина. Такое положение, когда числа протонов и нейтронов в ядре четные и равны (I = 0), можно рассматривать как состояние с "полным спариванием", аналогичным полному спариванию электронов в диамагнитной молекуле.
В 1921г. Штерн и Герлах методом атомного пучка показали, что измеримые значения магнитного момента атома дискретны соответственно пространственному квантованию атома в неоднородном магнитном поле. В последующих экспериментах, пропуская через постоянное магнитное поле пучок молекул водорода, удалось измерить небольшой по величине магнитный момент ядра водорода. Дальнейшее развитие метода состояло в том, что на пучок воздействовали дополнительным магнитным полем, осциллирующим с частотой, при которой индуцируются переходы между ядерными энергетическими уровнями, соответствующими квантовым значениям ядерного магнитного момента.
Если ядерное спиновое число равно I, то ядро имеет (2I+1) равноотстоящих энергетических уровней; в постоянном магнитном поле с напряженностью H расстояние между наивысшим и наинизшим из этих уровней равно 2mH, где m- максимальное измеримое значение магнитного момента ядра. Отсюда расстояние между соседними уровнями равно mH/I, а частота осциллирующего магнитного поля, которое может вызвать переходы между этими уровнями, равна mH/Ih.
В эксперименте с молекулярным пучком до детектора доходят те молекулы, энергия которых не меняется. Частота, при которой происходят резонансные переходы между уровнями, определяется путем последовательного изменения (развертки) частоты в некотором диапазоне. На определенной частоте происходит внезапное уменьшение числа молекул, достигающих детектора.
Первые успешные наблюдения ЯМР такого рода были выполнены с основными магнитными полями порядка нескольких кило эрстед, что соответствует частотам осциллирующего магнитного поля в диапазоне 105-108 Гц. Резонансный обмен энергией может происходить не только в молекулярных пучках; его можно наблюдать во всех агрегатных состояниях вещества.
В 1936г. Горнер пытался обнаружить резонанс ядер Li7 во фтористом литии и ядер H1 в алюмокалиевых квасцах. Другая безуспешная попытка была предпринята гортнером и Бруром в 1942г. Регистрацию поглощения высокочастотной энергии при резонансе в этих экспериментах предполагалось производить соответственно калориметрическим методом и по аномальной дисперсии. Основной причиной неудач этих опытов был выбор неподходящих объектов. Лишь в конце 1945 года двумя группами американских физиков под руководством Ф. Блоха и Э.М. Пурселла впервые были получены сигналы ядерного магнитного резонанса. Блох наблюдал резонансное поглощение на протонах в воде, а Парселл добился успеха в обнаружении ядерного резонанса на протонах в парафине. За это открытие они в 1952 году были удостоены Нобелевской премии.
1.2.Технологичекие приложения ЯМР (основные достоинства метода ЯМР).
Метод ЯМР, хотя он и называется методом ядерного магнитного резонанса, не имеет никакого отношения к ядерной физике, которая, как известно, изучает процессы превращения ядер, т.е. радиоактивные процессы. При этом магнитная энергия (а явление ЯМР имеет место при помещении исследуемого образца в постоянное магнитное поле) не влияет на термодинамические свойства вещества, т.к. она во много раз (а точнее - на несколько порядков) меньше тепловой энергии, характерной для происходящих в обычных условиях процессов, в том числе и биологических.
Основные достоинства метода ЯМР.
-Высокая разрешающая способность – на десять порядков больше, чем у оптической спектроскопии.
Перейти на страницу: 1 2 3 4 5 6 7 8 9 10 11 12