Ядерный магнитный резонанс (ЯМР)
Рассматриваемая здесь модель, естественно, не может объяснить ни наличие магнитного момента у нейтральной частицы (например, у нейтрона), ни отрицательных магнитных моментов некоторых ядер. Тем не менее, изучение классического движения магнитного диполя в магнитном поле позволяет получить дополнительные (по сравнению с квантово-механическим рассмотрением) сведения о природе магнитного резонансного поглощения, особенно при рассмотрении нестационарных явлений. Недостатки классической модели указывают на сложность структуры ядра: полный угловой момент ядра получается в результате сложения в различных комбинациях орбитальных и спиновых движений частиц, входящих в состав ядра. Это сложение аналогично связи спиновых и орбитальных моментов электронов в атомах и молекулах.
Выражение 2.3 позволяет записать классическое уравнение движения магнитного момента в векторной форме следующим образом:
d/dt=g[
], (2.4)
где –напряженность внешнего магнитного поля.
Если в отсутствии магнитного поля вращать вектор с угловой скоростью
, то, в соответствии с законом Ньютона для вращательного движения, выражение для d
/dt будет иметь вид:
d/dt=[
]. (2.5)
Из сопоставления выражений 2.4 и 2.5 следует, что действие магнитного поля в точности эквивалентно вращению момента с угловой скоростью
=-g
(2.6), т.е. ω=gH, или n=gH/2p (2.7), здесь n [Гц] ,H [Э] (уместно вспомнить, что [ab]=-[ba]).
Таким образом, в постоянном магнитном поле вектор магнитного момента будет прецессировать вокруг направления вектора с постоянной угловой скоростью -g
независимо от направления вектора
, т.е. от угла между осью вращения частицы и направлением поля (рис.1).Угловой скоростью такой прецессии называют ларморовой частотой, а выражение 2.6 – формулой Лармора.
Если перейти к системе координат, вращающейся равномерно с угловой скоростью -g, то при отсутствии других магнитных полей вектор магнитного момента
в этой системе координат будет оставаться неизменным по величине и направлению. Другими словами, во вращающейся системе координат постоянное магнитное поле как будто отсутствует.
Рис.1. Прецессия магнитного момента в магнитном поле
Допустим теперь, что кроме поля введено другое, более слабое поле
1, постоянное по величине и равномерно вращающееся в плоскости, перпендикулярной направлению
(рис.1). Если скорость вращения поля
1 не равна частоте ларморовой прецессии, то это поле будет вращаться и в упомянутой выше вращающейся системе координат. Наличие поля приводит к появлению момента сил [
1], который стремится повернуть ядерный момент в плоскость, перпендикулярную
. Если направление
1 во вращающейся системе координат меняется, то направление соответствующего момента сил будет быстро меняться, и единственным результатом будут слабые периодические возмущения прецессии магнитного момента.
Если, однако, само поле 1 вращается с ларморовой частотой, то во вращающейся системе координат оно будет вести себя подобно постоянному полю. Поэтому направление момента сил будет оставаться неизменным, что вызовет сильные колебания направления магнитного момента
, т.е. большие изменения угла между
и
0. При изменении угловой скорости вращения поля
1 колебания с наибольшей амплитудой возникают при совпадении этой скорости с ларморовой частотой. В этом случае говорят о явлении резонанса.
Аналогичное явление резонанса должно наблюдаться, когда направление поля 1 фиксировано, а величина его меняется по синусоидальному закону с частотой, близкой к частоте ларморовой прецессии. Это происходит потому, что такое поле можно представить в виде суперпозиции двух равных полей, вращающихся с равными угловыми скоростями в противоположных направлениях (рис.2). При этом поле, вращающееся в направлении, противоположном направлению ларморовой прецессии, не будет оказывать влияния на резонанс.
Перейти на страницу: 1 2 3 4 5 6 7 8 9 10 11 12