Рефераты по Физике

Ядерный магнитный резонанс (ЯМР)

Страница 7

Зеемановское расщепление уровней энергии ядра в магнитном поле

Рис.6. Зеемановское расщепление уровней энергии ядра в магнитном поле.

Явление ЯМР состоит в резонансном поглощении электромагнитной энергии, обусловленном магнетизмом ядер. Отсюда вытекает очевидное название явления: ядерный - речь идет о системе ядер, магнитный - имеются в виду только их магнитные свойства, резонанс - само явление носит резонансный характер. Действительно, из правил частот Бора следует, что частота n электромагнитного поля, вызывающего переходы между соседними уровнями, определяется формулой:

hν=μH0/I, или ν=μH0/hI. Так как векторы момента количества движения (углового момента) и магнитного момента параллельны, то часто удобно характеризовать магнитные свойства ядер величиной g, определяемой соотношением

m=g(Iħ), где γ - гиромагнитное отношение, имеющее размерность радиан*эрстед-1*секунда-1 (рад*Э-1*с-1). С учетом этого найдем

ν=γ0/2π. (3.2) Таким образом, частота пропорциональна приложенному полю. Если в качестве типичного примера взять значение $\gamma$для протона, равное 2,6753*104 рад/(Э*с), и H0 = 10000 Э, то резонансная частота ν=42.577 (МГц) Такая частота может быть генерирована обычными радиотехническими методами. Спектроскопия ЯМР характеризуется рядом особенностей, выделяющих ее среди других аналитических методов. Около половины ($\sim$150) ядер известных изотопов имеют магнитные моменты, однако только меньшая часть их систематически используется. До появления спектрометров, работающих в импульсном режиме, большинство исследований выполнялось с использованием явления ЯМР на ядрах водорода (протонах) 1H (протонный магнитный резонанс - ПМР) и фтора 19F. Эти ядра обладают идеальными для спектроскопии ЯМР свойствами:

Это обусловливает прежде всего высокую чувствительность метода при детектировании сигналов от указанных выше ядер. Кроме того, существует теоретически строго обоснованное правило, согласно которому только ядра со спином, равным или большим единицы, обладают электрическим квадрупольным моментом. Следовательно, эксперименты по ЯМР 1H и 19F не осложняются взаимодействием ядерного квадрупольного момента ядра с электрическим окружением. Внедрение импульсных спектрометров ЯМР в повседневную практику существенно расширило экспериментальные возможности этого вида спектроскопии. В частности, запись спектров ЯМР 13C растворов - важнейшего для химии изотопа - теперь является фактически привычной процедурой. Обычным явлением стало также детектирование сигналов от ядер, интенсивность сигналов ЯМР которых во много раз меньше интенсивности для сигналов от 1H, в том числе и в твердой фазе. Спектры ЯМР высокого разрешения обычно состоят из узких, хорошо разрешенных линий (сигналов), соответствующих магнитным ядрам в различном химическом окружении. Интенсивности (площади) сигналов при записи спектров пропорциональны числу магнитных ядер в каждой группировке, что дает возможность проводить количественный анализ по спектрам ЯМР без предварительной калибровки. Еще одна особенность ЯМР - влияние обменных процессов, в которых участвуют резонирующие ядра, на положение и ширину резонансных сигналов. Таким образом, по спектрам ЯМР можно изучать природу таких процессов. Линии ЯМР в спектрах жидкостей обычно имеют ширину 0,1 - 1 Гц (ЯМР высокого разрешения), в то время как те же самые ядра, исследуемые в твердой фазе, будут обусловливать появление линий шириной порядка 1*104 Гц (отсюда понятие ЯМР широких линий). В спектроскопии ЯМР высокого разрешения имеются два главных источника информации о строении и динамике молекул:

Химический сдвиг

В реальных условиях резонирующие ядра, сигналы ЯМР которых детектируются, являются составной частью атомов или молекул. При помещении исследуемых веществ в магнитное поле (0) возникает диамагнитный момент атомов (молекул), обусловленный орбитальным движением электронов. Это движение электронов образует эффективные токи и, следовательно, создает вторичное магнитное поле, пропорциональное в соответствии с законом Ленца полю 0 и противоположно направленное. Данное вторичное поле действует на ядро. Таким образом, локальное поле в том месте, где находится резонирующее ядро,

лок=0 (3.3) где σ- безразмерная постоянная, называемая постоянной экранирования и не зависящая от 0, но сильно зависящая от химического (электронного) окружения; она характеризует уменьшение лок по сравнению с 0 . Величина $\sigma$меняется от значения порядка 10-5 для протона до значений порядка 10-2 для тяжелых ядер. С учетом выражения для лок имеем:

Перейти на страницу:  1  2  3  4  5  6  7  8  9  10  11  12