Рефераты по Физике

Ядерный магнитный резонанс (ЯМР)

Страница 4

Рис.2. Разложение вектора магнитного поля на два вектора, вращающиеся в противоположные стороны.

На практике для создания магнитного поля, осциллирующего вдоль определенного направления, например, вдоль оси х, по катушке, ось которой перпендикулярна полю 0 и направлена вдоль оси х, пропускают переменный ток. Напряжение с частотой w, приложенное к катушке, создает поле, эквивалентное двум вращающимся в противоположных направлениях полям величиной (Н1cos wt+H1sin wt) и (H1cos wt – H1sin wt).

Если w соответствует частоте резонанса, магнитный диполь поглощает энергию поля, создаваемого катушкой, вследствие чего вектор магнитного момента отклоняется в направлении к плоскости ху и во второй (приемной) катушке, расположенной вдоль оси у, наводится э.д.с.

Т.о., рассмотренная здесь классическая модель резонанса, объясняя суть явления, указывает и на экспериментальное его проявление, состоящее в непрерывном поглощении электромагнитной энергии поля Н1.

2.2.Квантово-механическое рассмотрение условий резонанса.

При включении магнитного поля каждое ядро приобретает дополнительную энергию -m, которую называют зеемановской. Гамильтониан в этом случае имеет очень простой вид

H=-m (2.8)

Направляя ось z вдоль приложенного постоянного магнитного поля 0, получаем

H=-gh0Iz (2.9)

Собственные значения этого гамильтониана являются произведениями величины gh0 на собственные значения оператора Iz . поэтому возможные значения энергии равны

Е=-gh0m , m= I , I-1 , … , -I . (2.10)

Чаще всего для наблюдения магнитного резонанса применяют переменное магнитное поле, направленное перпендикулярно постоянному полю. Если амплитуду переменного поля обозначить через H0x, то часть полного гамильтониана, приводящая к переходам, будет иметь вид

Hвозм=-gh0xIxcoswt (2.11)

Оператор Ixимеет отличные от нуля матричные элементы (m’êIx êm), связывающие состояния m и m’, только в случае выполнения равенства m’=m+\-1. В соответствии с этим разрешены переходы только между соседними уровнями, что дает

hw=DE=gh0 (2.12)

или

w=g0 (2.13)

Это соотношение позволяет вычислить частоту, при которой можно наблюдать резонанс, если известно, каким образом можно определить g.

Вычислим магнитный и механический моменты частицы массой mи заряда e, движущейся по окружности радиуса r с периодом Т. В этом случае механический момент

J=mvr=m(2pr2/T), (2.14)

а магнитный момент

m=iA (2.15)

(рассматриваем систему как контур тока i, охватывающий площадь А). Поскольку i= (e/c)(1/T), получаем

m=(е/c)(pr2/T). (2.16)

Сравнение вычисленных значений m и J дает g=m/J=e/2mc. Помимо оценки порядка величины g эта формула позволяет сделать вывод о том, что g для ядер должна быть на три порядка меньше величины g для электронов. Следует пользоваться самыми сильными магнитными полями, какие могут быть получены в лабораторных условиях, т.к. при этом возрастает величина поглощаемых квантов, и сигнал резонанса увеличивается.

Эксперимент Штерна – Герлаха.

Существенным для понимания свойств магнитного момента микрочастиц является его квантование, т.е. наличие у микрочастицы дискретных состояний с различными магнитными свойствами.

Классический эксперимент по доказательству дискретных свойств магнитного момента был впервые осуществлен Штерном и Герлахом. Простейшая схема этого опыта, проведенного сначала для электрона, состоит в следующем (рис.3.). Катод, на который нанесен слой натрия, разогревается в вакууме. Пучок атомов натрия с помощью системы фокусирующих щелей направляется в пространство между полюсами магнита, магнитное поле которого неоднородно; в частности, компонента поля Нz (вдоль оси магнита) зависит от z-координаты, т.е. дНz/дz ≠ 0. за магнитом располагают пластину, на которой регистрируют пучок атомов натрия. Если магнитное поле отсутствует, то пучок фокусируется в центре пластины (Δl=0). Если предположить, что 2s-электрон атома натрия обладает собственным магнитным моментом μе, то при наложении неоднородного магнитного поля на электрон будет действовать сила F, проекция которой на ось z равна

Fz=(μe)z*(дН/дz), (2.17)

где (μе )z – проекция магнитного момента электрона на ось z . эта сила будет вызывать отклонение пучка от центра. Т.о., измерение величины отклонения пучка Δl можно использовать для определения величины проекции магнитного момента электрона (μе)z.

Рис.3. Схема эксперимента Штерна – Герлаха.

Наиболее интересный результат этих экспериментов состоит в том, что на пластине обнаруживается две компоненты (дуплет), расположенные слева и справа от центра на расстояниях ±Δl. Этот результат свидетельствует о наличии у ансамбля частиц двух подсистем, характеризующихся разными значениями проекции магнитного момента ±(μе)z.

При определенных модификациях, вызванных главным образом исключительной малостью ядерных магнитных моментов, эксперименты Штерна – Герлаха могут быть проведены и для случая ядер. При этом, однако, оказывается, что для некоторых ядер наблюдается не две, а большее число компонент.

Перейти на страницу:  1  2  3  4  5  6  7  8  9  10  11  12