Рефераты по Физике

Лекции по Концепциям Современного Естествознания (КСЕ)

Страница 9

me – масса электрона

ve – скорость электрона

rn – радиус орбиты

Момент импульса электрона на боровской орбите равен примерно целому числу, причем, n≠0.

II. Атом излучает или поглощает квант энергии при переходе электрона из одного энергетического состояния в другое ( с одной орбиты на другую).

hn=E2-E1

E1 – стационарное энергетическое состояние электрона

E2 – энергия электрона в возбужденном состоянии.

Наименьшее энергетическое состояние электрона в атоме – на ближайшей к ядру орбите n=1. Данная формула объяснила линейчатые спектры атома.

Спектры электромагнитного излучения атома.

Радиоволны и радарное излучение в том случае, когда происходит изменение спина атома или ядра. Инфракрасное – за счет колебаний атомов в молекуле. Видимое, ультрафиолетовое – за счет квантовых переходов внешних электронов атома из возбужденного состояния в основное. Рентгеновское – за счет перехода электронов с внешних оболочек на внутренние. Гамма-излучение – связано с ядерными процессами и никак не связана с электронами.

Теория Бора является промежуточным звеном между классической и квантовой механикой.

Первый постулат был объяснен на основе уравнений де Бройля.

 

 

2πrn – длина окружности боровской орбиты.

Вывод: боровские (стационарные) орбиты – это такие орбиты, на которых укладывается целое число волн де Бройля.

Критерии применимости законов микро-, макро- и мегамира.

1. Макромир: Законы классической механики. Главный критерий: v<<c.

2. Мегамир: v®c. Релятивистская механика.

3. Микромир: Квантовая механика – постоянная Планка.

Гейзенберг в 1926 году выдвинул принцип неопределенности.

Для частиц, обладающих корпускулярно-волновым дуализмом нельзя одновременно определить точно и координату и импульс. Чем точнее определяется координата, тем менее точно можно определить импульс.

Δx – это неопределенность, или неточность, нахождения координаты импульса.

Δpx – неопределенность, или неточность нахождения самого импульса.

Если это произведение сравнимо с постоянной Планка, то поведение частицы описывается квантовой механикой. Если это произведение велико, то есть, много больше постоянной Планка, то поведение частицы описывается классической механикой.

Ни для какого движения в природе это произведение не будет меньше постоянной Планка.

Одновременное изменение энергии и среднее время жизни возбужденной частицы также нельзя измерить одновременно.

ΔE – средняя ширина энергетического уровня.

В 1926-м году Э. Шредингер вывел фундаментальное уравнение квантовой механики. Вывел волновое уравнение, в которое входит функция Ψ(x, y, z), зависящую от всех трех координат движения электрона и являющуюся аналогом амплитуды. Волновое уравнение Шредингера выведено из уравнения поперечной волны классической физики. Функция, как и амплитуда, может быть положительной и отрицательной.

Ψ2 представляет наибольший интерес. Квадрат волновой функции имеет определенный физический смысл. Квадрат функции характеризует вероятность нахождения электрона в данной точке атомного пространства с координатами x, y, z. Из уравнения Шредингера следует, что нельзя говорить о какой-то определенной боровской орбите, по которой движется электрон. Более правильно говорить об электронном облаке, а именно, о его наибольшей плотности в каком-то месте атома. И там, где плотность наибольшая, там и есть наибольшая вероятность нахождения данного электрона (ок. 90%). Пространство вокруг ядра, в котором наиболее вероятно находится электрон, называется орбиталью. Эти орбитали и есть решения уравнения Шредингера. Эти решения характеризуются тремя константами, которые Шредингер называл квантовыми числами n, l, m.

n – главное квантовое число, которое определяет размер атома (n от 1 до бесконечности) и показывает энергетический уровень электрона в атоме. Чем больше n, тем более высокой энергией обладает электрон. Если n>>1, то энергетический уровень образует не дискретный спектр, а сплошной, то есть, это уже объект макромира.

Принцип соответствия Бора: Законы квантовой механики при больших значениях квантовых чисел переходят в законы классической механики.

Вывод из этого принципа: всякая новая теория является развитием предыдущих теорий и полностью её не отвергает, а лишь указывает границы её применимости.

l – орбитальное (побочное или азимутальное) квантовое число. Характеризует (показывает) форму электронного облака и изменяется от 0 до (n-1), то есть, зависит от главного квантового числа. l определяет значение момента количества движения электрона по орбите.

l характеризует число подуровней на заданном энергетическом уровне.

Каждому значению l соответствует орбиталь особой формы.

Орбитали с l = 0 называются s-орбиталями,

l =1 - р-орбиталями (3 типа, отличающихся магнитным квантовым числом m),

l = 2 - d-орбиталями (5 типов),

l = 3 - f-орбиталями (7 типов).

m – магнитное квантовое число. Показывает ориентацию электронного облака в атоме при взаимодействии магнитного поля электрона с внешним магнитным полем и магнитными полями соседних электронов. m определяет число орбиталей на данном подуровне l (от –l до +l).

Перейти на страницу:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25