Стохастический резонанс
Содержание
1 Введение 2 Физические основы эффекта стохастического резонанса 3 Стохастический резонанс как фундаментальный Свежая информация купить торт в москве с доставкой на нашем сайте. пороговый эффект 4 Синхронизация стохастических систем 4.1 Синхронизация стохастического бистабильного осциллятора 4.2 Внешняя стохастическая синхронизация триггера Шмитта 5 Стохастический резонанс и количественная оценка восприятия информации 6 Выводы 7 Список литературы |
1 Введение
1 Введение
С понятием "шум" в обыденном сознании ассоциируется термин "помеха", наличие которой может только ухудшить функционирование любой системы. Хорошо известны классические проблемы радиофизики, связанные с ограничением чувствительности усилителей и конечностью ширины спектральной линии генераторов, что обусловлено воздействием естественных и технических шумов. В силу дискретности строения материи флуктуационные явления присущи всем реальным системам и принципиально неустранимы. Со времен Больцмана стала ясной ограниченность чисто детерминистского описания эволюционных процессов, и это ускорило развитие статистической физики. Основатели теории нелинейных колебаний также сознавали ограниченность детерминированного описания. Уже в 1933 г. ими был поставлен вопрос о статистическом рассмотрении динамических систем, что послужило основой для развития исследований в области статистической радиофизики.
Было установлено, что наличие источников шума в нелинейных динамических системах может индуцировать принципиально новые режимы функционирования, которые не могут быть реализованы в отсутствие шума, например, индуцированные шумом незатухающие колебания. Эффекты указанного типа получили название индуцированных шумом переходов. Многообразие и сложность типов таких переходов в нелинейных динамических системах вызвали постановку удивительных до недавнего времени вопросов: всегда ли воздействие шума приводит к ухудшению характеристик динамических систем и возможны ли случаи, когда действие шума вызывает увеличение степени упорядоченности движений в системе или улучшение ее рабочих характеристик? Исследования последних лет убедительно показали, что в нелинейных системах воздействие шума может индуцировать новые более упорядоченные режимы, приводить к образованию более регулярных структур, увеличивать степень когерентности, вызывать рост усиления и увеличение отношения сигнал/шум и т.д. Другими словами, шум в нелинейных системах может играть конструктивную роль, вызывая рост степени порядка в системе.
Одним из наиболее ярких и относительно простых примеров указанного типа поведения нелинейных систем при воздействии шума является эффект стохастического резонанса (СР). Эффект СР определяет группу явлений, при которых отклик нелинейной системы на слабый внешний сигнал заметно усиливается с ростом интенсивности шума в системе. При этом интегральные характеристики процесса на выходе системы, такие как коэффициент усиления и отношение сигнал/шум, имеют отчетливо выраженный максимум при некотором оптимальном уровне шума. В то же время энтропия как мера степени беспорядка достигает минимума, свидетельствуя о возрастании степени индуцированного шумом порядка.
Термин "стохастический резонанс" был введен в 1981 -1982 гг. на основе исследований модели бистабильного осциллятора, предложенной для описания периодичности в наступлении ледниковых периодов на Земле. Модель описывала движение частицы в симметричном двухъямном потенциале под действием периодической силы в условиях большого трения. Устойчивые положения частицы соответствовали ледниковому периоду и нормальному климату Земли. Периодическая сила соответствовала колебаниям эксцентриситета орбиты Земли. Расчеты показали, что реальная амплитуда периодический силы оказалась малой и не обеспечивала переключений системы из одного состояния в другое. Возможность переключений была достигнута путем введения дополнительной случайной силы, индуцирующей переходы через потенциальный барьер.
В 1983 г. эффект СР был исследован в триггере Шмитта, где для описания явления впервые использовано отношение сигнал/шум. В этой работе установлено, что отношение сигнал/шум на выходе триггера при возбуждении его слабым периодическим и шумовым сигналами возрастает с ростом шума, достигает максимума и затем убывает. Таким образом, существует некий оптимальный уровень интенсивности шума, при котором периодическая компонента сигнала усиливается максимально.
Впоследствии эффект СР был обнаружен и исследован во многих бистабильных системах: в кольцевом лазере, в магнитных системах, в пассивных оптических бистабильных системах, в системах с электронным парамагнитным резонансом, в экспериментах с броуновскими час гидами, в экспериментах с магнитоупругой лентой, в туннельном диоде, в сверхпроводящих квантовых интерферометрах, в ферромагнетиках и сегнетоэлектриках, СР наблюдался не только в физических, но и в химических системах и даже в социологических моделях.
Исследования показали, что эффект СР представляет собой фундаментально общее физическое явление, типичное для нелинейных систем, в которых с помощью шума можно контролировать один из характерных временных масштабов системы. Физическая картина явления СР достаточно наглядна и проста. Для иллюстрации рассмотрим модель стохастического бистабильного осциллятора.
2 Физические основы эффекта СР
Рассмотрим качественно движение броуновской частицы в системе с симметричным бистабильным потенциалом типа U(x) = —0.5х2 + 0,25х4 в условиях действия слабого периодического возмущения Asin(wt). Система имеет два характерных временных масштаба: один обусловлен случайными блужданиями частицы в окрестности одного из состояний равновесия (внутриямная динамика), другой временной масштаб характеризует среднее время перехода через потенциальный барьер (глобальная динамика). Отметим, что амплитуда периодического воздействия предполагается малой настолько, что исключает переходы через барьер в отсутствие шума. Второму временному масштабу в частотной области отвечает средняя скорость (или частота) выхода из метастабильного состояния скорость Крамерса.
Перейти на страницу: 1 2 3 4 5 6