Стохастический резонанс
В 1983 г. эффект СР был исследован в триггере Шмитта, где для описания явления впервые использовано отношение сигнал/шум. В этой работе установлено, что отношение сигнал/шум на выходе триггера при возбуждении его слабым периодическим и шумовым сигналами возрастает с ростом шума, достигает максимума и затем убывает. Таким образом, существует некий оптимальный уровень интенсивности шума, при котором периодическая компонента сигнала усиливается максимально.
Впоследствии эффект СР был обнаружен и исследован во многих бистабильных системах: в кольцевом лазере, в магнитных системах, в пассивных оптических бистабильных системах, в системах с электронным парамагнитным резонансом, в экспериментах с броуновскими частицами, в экспериментах с магнитоупругой лентой, в туннельном диоде, в сверхпроводящих квантовых интерферометрах, в ферромагнетиках и сегнетоэлектриках, СР наблюдался не только в физических, но и в химических системах и даже в социологических моделях.
Исследования показали, что эффект СР представляет собой фундаментально общее физическое явление, типичное для нелинейных систем, в которых с помощью шума можно контролировать один из характерных временных масштабов системы. Физическая же картина явления СР достаточно наглядна и проста.
2 Физические основы эффекта стохастического резонанса
Рассмотрим качественно движение броуновской частицы в системе с симметричным бистабильным потенциалом типа U(x) = -0.5х2 + 0,25х4 в условиях действия слабого периодического возмущения Asin(wt). Система имеет два характерных временных масштаба: один обусловлен случайными блужданиями частицы в окрестности одного из состояний равновесия (внутриямная динамика), другой временной масштаб характеризует среднее время перехода через потенциальный барьер (глобальная динамика). Отметим, что амплитуда периодического воздействия предполагается малой настолько, что исключает переходы через барьер в отсутствие шума. Второму временному масштабу в частотной области отвечает средняя скорость (или частота) выхода из метастабильного состояния скорость Крамерса.
Рисунок 1 - Бистабильный потенциал под действием слабой периодической модуляции. Потенциал может иметь как "жесткую", так и "мягкую" форму. Частица, отмеченная шариком, может преодолеть потенциальный барьер только в присутствии внешнего или внутреннего шума.
В присутствии периодической силы потенциальные ямы будут периодически колебаться (рис. 1), вероятности перехода также станут периодическими функциями времени, и выходной сигнал будет включать периодическую компоненту.
На рисунке 2 представлены сигналы на выходе бистабильной системы с учетом внутриямной динамики (а) и с учетом исключительно моментов времени пересечения барьера (приближение двух состояний) (б), а также спектр мощности (в) сигнала, показанного на графике (б).
Периодическая модуляция потенциала приводит к периодической модуляции как высоты потенциального барьера DU @ DU0 + Аsin(wt), так и вероятности перехода. В итоге в спектре мощности выходного сигнала регистрируется d-пик на частоте модуляции и ее нечетных гармониках (в случае симметричного потенциала). Предположим, что потенциальный барьер DU0, амплитуда и частота модуляции фиксированы. Частота Крамерса rk будет зависеть только от интенсивности шума D. При малой интенсивности шума время перехода чрезвычайно велико и намного превышает период сигнала модуляции. При высоком уровне шума за время одного периода сигнала система с высокой степенью вероятности совершит многократные переключения. Варьируя интенсивность шума, можно обеспечить режим, когда среднее время переходов через барьер близко к периоду сигнала модуляции. Переключения системы будут происходить в среднем в фазе с внешней периодической силой. Таким образом, варьируя интенсивность шума, можно настроить стохастическую бистабильную систему в режим максимального усиления сигнала модуляции и отношения сигнал/шум. Теоретические и экспериментальные исследования это подтвердили.
3 Стохастический резонанскак фундаментальный пороговый эффект
С точки зрения передачи информации биcтабильными системами в режиме СР основную роль играют исключительно переходы через потенциальный барьер. Внутриямная динамика может не оказывать существенного влияния на процесс переключений. Поэтому при обработке выходного сигнала с успехом используется метод динамики двух состояний. Выходной сигнал представляется в виде случайного телеграфного процесса, в котором путем фильтрации выделяется составляющая основной частоты. Можно вообще отказаться от анализа бистабильных динамических систем и представить СР как фундаментальный пороговый эффект. В этом случае процесс рассматривается в виде последовательности случайных событий, появляющихся в случае, когда сумма регулярной и шумовой компонент входного сигнала пересекает некоторый заданный пороговый уровень P:
Перейти на страницу: 1 2 3 4 5 6