Энтропия. Теория информации
Данный вывод оказывается в равной мере справедливым для таких несходных по своей природе систем, как газы, кристаллы, письменные тексты, биологические организмы или сообщества и др.
При этом, если для газа или кристалла при вычислении энтропии сравнивается только микросостояние (т.е. состояние атомов и молекул) и макросостояние этих систем (т.е. газа или кристалла как целого), то для систем иной природы (биологических, интеллектуальных, социальных) вычисление энтропии может производится на том или ином произвольно выбранном уровне. При этом вычисляемое значение энтропии рассматриваемой системы и количество информации, характеризующей степень упорядоченности данной системы и равное разности между максимальным и реальным значением энтропии, будет зависеть от распределения вероятности состояний элементов нижележащего уровня, т.е. тех элементов, которые в своей совокупности образуют эти системы.
Другими словами,
количество сохраняемой в структуре системы информации пропорционально степени отклонения системы от состояния равновесия, обусловленного сохраняемым в структуре системы порядком.
Сам того не подозревая, Шеннон вооружил науку универсальной мерой, пригодной в принципе (при условии выявления значенй всех вероятностей) для оценки степени упорядоченности всех существующих в мире систем.
Опредеделив введенную Шеноном информационную меру как меру упорядоченности движения, можно установить взаимосвязь информации и энергии, считая энергию мерой интенсивности движения. При этом количество сохраняемой в структуре систем информации пропорционально суммарной энергии внутренних связей этих систем.
Одновременно с выявлением общих свойств информации как феномена обнаруживаются и принципиальные различия относящихся к различным уровням сложности информационных систем.
Так, например, все физические объекты, в отличие от биологических, не обладают специальными органами памяти, перекодировки поступающих из внешнего мира сигналов, информационными каналами связи. Хранимая в них информация как бы «размазана» по всей их структуре. Вместе с тем, если бы кристаллы не способны были сохранять информацию в определяющих их упорядоченность внутренних связях, не было бы возможности создавать искусственную память и предназначенные для обработки информации технические устройства на основе кристаллических структур.
Вместе с тем необходимо учитывать, что создание подобных устройств стало возможным лишь благодаря разуму человека, сумевшего использовать элементарные информационные свойства кристаллов для построения сложных информационных систем.
Простейшая биологическая система превосходит по своей сложности самую совершенную из созданных человеком информационных систем. Уже на уровне простейших одноклеточных организмов задействован необходимый для их размножения сложнейший информационный генетический механизм. В многоклеточных организмах помимо информационной системы наследственности действуют специализированные органы хранения информации и ее обработки (например, системы, осуществляющие перекодирование поступающих из внешнего мира зрительных и слуховых сигналов перед отправкой их в головной мозг, системы обработки этих сигналов в головном мозге). Сложнейшая сеть информационных коммуникаций (нервная система) пронизывает и превращает в целое весь многоклеточный организм.
Уже на уровне биологических систем возникают проблемы учета ценности и смысла используемой этими системами информации. Еще в большей мере такой учет необходим для ананлиза функционирования интеллектуальных информационных систем.
Глубокое осознание специфики биологических и интеллектуальных систем позволяет выявить те границы, за пределами которых утрачивает свою компетентность разработанный современной наукой информационно-энтропийный подход.
Определить эти границы Шеннону пришлось на самом начальном этапе создания теории информации, поскольку без этого нельзя было использовать количественную меру информации для оценки письменных текстов и других созданных разумом человека информационных систем. Именно с этой целью Шеннон делает оговорку о том, что предложенный им метод исчисления информации письменных текстов игнорирует такие же их неотъемлемые свойства, как смысл и ценность содержащихся в них сообщений.
Так, например, при подсчете количества информации, содержащейся в таких двух сообщениях, как «очередную партию Каспаров играет белыми» и «у гражданина Белова родился сын» получится одна и та же величина – 1 бит. Нет сомнения, что два этих сообщения несут разный смысл и имеют далеко не равнозначную ценность для гражданина Белова. Однако, как было отмечено выше, оценка смысла и ценности информации находится за пределами компетенции теории информации и поэтому не влияет на подсчитываемое с помощью формулы Шеннона количество бит.
Игнорирование смысла и ценности информации не помешало Шеннону решать прикладные задачи, для которых предназначалась первоначально его теория: инженеру по технике связи вовсе не обязательно вникать в суть сообщений, передаваемых по линии связи. Его задача заключается в том, чтобы любое подобное сообщение передавать как можно скорее, с наименьшими затратами средств (энергии, диапазона используемых частот) и, по возможности, безо всяких потерь. И пусть тот, кому предназначена данная информация (получатель сообщений), вникает в смысл, определяет ценность, решает, как использовать ту информацию, которую он получил.
Такой сугубо прагматичный подход позволил Шеннону ввести единую, не зависящую от смысла и ценности, меру количества информации, которая оказалась пригодной для анализа всех обладающих той или иной степенью упорядоченности систем.
После основополагающих работ Шеннона начали разрабатываться основы смысловой (семантической) и ценностной (прагматической, аксиологической) информационных теорий .
Однако ни одной из этих теорий и предлагаемых их авторами единиц измерения ценности или смысла не суждено было приобрести такую же степень универсальности, какой обладает мера, которую ввел в науку Шеннон.
Перейти на страницу: 1 2 3 4 5 6 7 8 9 10 11 12 13 14