Энтропия. Теория информации
С учетом известного из теории вероятностей условия нормировки S pi = 1, подстановка (1.10) в (1.8) приводит выражение для Н к окончательному виду :
H = –S pi ln pi |
(1.11) | ||
i | |||
Проделанные Планком с помощью формулы Стирлинга чисто формальные преобразования не только позволили получить новое выражение для исчисления энтропии, но помогли более глубоко осознать смысл вычисляемой величины Н . Выражение (1.11) позволяет сделать два важных вывода :
1. Введение в формулу энтропии значений вероятностей расширило рамки применимости этой формулы далеко за пределы исследуемых термодинамикой молекулярных систем. Символ pi может обозначать вероятность не только тех или иных состояний молекул, но и различных состояний элементов любых систем (в частности, вероятностей появления букв текста или других символов передаваемых сообщений).
2. Выражение (1.11) соответствует полной энтропии системы. Поделив подсчитанную по формуле (1.11) величину на Ni , можно определить усредненную величину энтропии Н , относящуюся к одному элементу рассматриваемой системы, т.е.
(1.8) | |||||
H = –S pi ln pi | |||||
i | |||||
Именно в таком виде использовал функцию энтропии Шеннон для определения среднего значения энтропии одной буквы текста (опуская при этом знак усреднения).
1г. Согласно Шеннону, средняя энтропия одной буквы текста вычисляется по формуле (1.2) путем суммирования слагаемых pi log pi , в которых символом pi , обозначены вероятности соответствующих букв. Таким образом :
i=я |
(1.13) | ||
H = –S pi ln pi = - (pа log pа + pб log pб +…+ pя log pя) | |||
i=а |
Для удобства исчисления энтропии сообщений, передаваемых двоичным кодом, Шеннон заменил используемый термодинамикой натуральный логарифм ln двоичным логарифмом log2.
МЕТОДЫ ИСЧИСЛЕНИЯ КОЛИЧЕСТВА СТРУКТУРНОЙ ИНФОРМАЦИИ И ИНФОРМАЦИОННОЙ ЭНТРОПИИ ТЕКСТОВ
До опубликования созданной К.Шенноном теории Р.Хартли предложил определять количество информации по формуле :
I = log2 N |
(2.1) |
где I - количество информации ;
N - число возможных (ожидаемых) сообщений.
Для учета различной степени неожиданности (вероятности) сообщений К.Шеннон предложил использовать заимствованную из статистической физики вероятностную функцию энтропии, приведенную к виду (1.13)
В случае равной вероятности появления любой из N букв алфавита выполняется условие:
Pа = Pб = Pв = … = Pя = 1/N |
(2.2) |
В результате подстановки (2.2) в (2.1) и с учетом того, что:
- log1/N = + log N
получаем :
H = – ( |
1 |
log |
1 |
)=log N |
(2.3) |
N |
N |
Сопоставляя (2.1) и (2.3), приходим к выводу, что количество информации, вычисляемое по формуле Хартли, соответствует устранению неопределенности Н при получении сообщения об одной из букв алфавита, при условии равной вероятности появления любой из букв (условие 2.2).
При равных вероятностях появления всех букв алфавита текст становится наиболее хаотичным. Подсчитанная по формуле (2.3) величина информационной энтропии достигает максимальной величины :
Hmax = log N |
(2.4) |
За единицу количества информации принята величина информации, содержащейся в сообщении об одном из двух равновероятных событий.
До получения сообщения выполняются условия :
P1 = P2 = |
1 |
= |
1 |
(2.5) | |
N |
2 |
При подстановке (2.5) в (1.13) получаем :
H = (½ log2 ½ + ½ log2 ½) = + log2 2 = 1 bit |
Перейти на страницу: 1 2 3 4 5 6 7 8 9 10 11 12 13 14