Рефераты по Физике

Энтропия. Теория информации

Страница 7

ЭТАПЫ РАЗВИТИЯ ТЕОРИИ ЭНТРОПИИ

. Функция энтропии была введена в термодинамику Р.Клаузиусом, предложившим исчислять превращение энтропии по формуле:

D S =

DQ

(1.1)

T

где S - энтропия ;

Q - количество тепла ;

Т - абсолютная температура .

При передаче тепла D Q от более разогретого тела с температу­рой Т1 к менее разогретому телу с температурой Т2 превращение

энтропии D S равно:

D S =

- DQ

+

+DQ

(1.2)

T1

T2

Из формулы (1.2) с учетом условия T1 > T2 следует вывод :

D S > 0

(1.3)

Поскольку во всех физических процессах тепло перетекает самопроизвольно от более разогретых к менее разогретым телам, условие (1.3) приобретает силу физического закона, получившего название Второго начала термодинамики.

Пока существует разность температур T1 – T2, часть теплового потока может быть преобразована в полезную (антиэнтропийную) энергию либо в естественно протекающих процессах (например, биологических), либо с помощью тепловых машин.

При условии T1 = T2 энергия полностью утрачивает свои антиэнтропийные свойства. Этот вывод был положен в основу теории тепловой смерти Вселенной.

Заметим, что сам термин «энтропия» был введен Клаузиусом, образовавшим его от корня греческого слова «тропе», означающего «превращение» с добавлением заимствованной из слова «энергия» приставки «эн-».

. Предложенная Клаузиусом формула энтропии (1.1) не раскрывала внутренних механизмов процессов, приводящих к воз­растанию энтропии.Эта задача была решена Л.Больцманом, предложившим исчислять энтропию идеального газа по формуле :

S = K H

(1.4)

где K= 1,38 · 10 -16 эрг/градус – коэффициент Больцмана

Н - математическая энтропия.

Согласно Больцману, величина H определяется так :

H = ln

N !

(1.5)

N1 ! N2 ! … Nk !

где N - общее число молекул газа, находящегося в рассматриваемом объеме.

Ni - число молекул, движущихся со скоростями, соответствующими i-ой ячейке условного пространства скоростей.

При этом 1= 1,2, . К ( 1.6)

Условие (1.6) означает, что все N молекул распределены по соответствующим ячейкам пространства скоростей, в количествах N1, N2, … Nk,, учитываемых уравнением (1.5)

Согласно (1.5) перестановка молекул, находящихся внутри каждой из ячеек, не влияет на величину Н . Отсюда следует, что подсчитанная по формуле (1.5) величина Р соответствует числу возможных микросостояний системы (в частности газа), при ко­тором макросостояние системы остается неизменным.

. М.Планк преобразовал формулу Больцмана (1.5), исполь­зовав для этого математическую формулу Стирлинга, справедливую для больших значений N :

ln(N !) = Nln N – N

(1.7)

В результате подстановки (1.7) в (1.5) получается соотношение :

H = Nln N – N –(S Ni ln Ni – S Ni)

 

i

 

i

 

С учетом условия S Ni = N, выражение для Н приводится к виду:

H = Nln N –S Ni ln Ni

(1.8)

 

i

 

Далее Планк ввел в рассмотрение вероятности различных сос­тояний молекул, определив их как :

pi =

Ni

(1.9)

N

При этом второе слагаемое в правой части (1.8) можно пред­ставить как:

S Ni ln Ni =S pi N ( ln pi + ln N ) = N S pi ln pi + N ln N Si pi

(1.10)

i

 

i

 

i

 

i

 

Перейти на страницу:  1  2  3  4  5  6  7  8  9  10  11  12  13  14