Рефераты по Физике

Энтропия. Теория информации

Страница 12

Если алфавит (уровень п = 0) содержит 30 букв (N0 = 30), а каждое «слово» искусственного текста состоит из 6 букв (К = 6), то общее число таких «слов» составит:

N1 = N0K1 = 306 = 729 ·106

Среди указанного количества «слов» большинство составят бессмысленные или даже непроизносимые «слова» (из 6-ти глас­ных, 6-ти согласных и т.п.).

Но если хотя бы 0,01% от общего числа буквенных комбинаций составят осмысленные слова, общий лексикон составит 72 900 слов.

Еще более прогрессивно возрастает число комбинаций с переходами на более высокие уровни n = 2, п = 3 и т.д.

Для определения возрастания информационной емкости по мере перехода на более высокие уровни изображенной на информаци­онно-энтропийной спирали напомним , что максимальное количес­тво структурной информации A/s' накапливается при переходе от Нr′ = Нmax к Нr′′ = 0, т.е. равно:

D IS = Нr′ – Нr′′ = Hmax

Величина максимальной энтропии для п - ой ступени определя­ется как:

Нпmax = log Nn = Кn log N0 (3.19)

Сопоставляя величину Нпгнх с величиной энтропии ступени n = О

H0max = log N0 (3.20)

убеждаемся, что в результате перехода с уровня n = 0 на уро­вень n , максимальная энтропия возросла в Кn раз :

Нпmax =Кn Н0max (3.21)

При переходе от исходного состояния Н в конечное состояние К энтропия уменьшается от Нr = Нmax до Нr = 0, а величина на­капливаемой системой информации соответственно возрастает от I=0 до D IS = Нmax (см. рис 1).

При переходе с уровня n = О на уровень n в соответствии с увеличением энтропии в Кn раз увеличивается значение DISmax то есть возрастает потенциальная емкость:

(D ISmax)0 = Kn(D ISmax)0 (3.22)

В качестве примера подсчитаем с помощью формулы (3.22), как будут возрастать размеры витков спирали по мере увеличения номера ступени п .

Приняв условно диаметр витка при n = 0 за 1 см., получим размеры вышележащих витков, сведенные в таблицу 2.

Таблица 2

п

1

2

3

4

5

6

Диаметры витков в см.

1

6

36

216

1296

7776

Таблица 2 дает наглядное представление о степени прогрес­сивности роста информационной емкости по мере перехода на вышележащие витки. Нетрудно заметить, что при n = 3 , размеры витка (36 см.) близки к размерам раскрытой книжки, при n = 5 – к размерам довольно просторной залы (с диаметром 12,96 м ) , а при п = 6 – к размерам городской площади (с диаметром 77,76 м ).

Вследствие роста информационной емкости система, подни­маясь в процессе развития на все более высокие уровни иерархической спирали и постоянно стремясь к состоянию жесткой детерминации, оказывается тем дальше от этого состояния (в смысле потенциальной возможности накопления информации), чем больше витков в этой спирали ей удается пройти.

Как уже отмечалось, системы в своем развитии, как правило, не достигают состояния жесткой детерминации. Условием их динамичного равновесия оказывается сочетание частично детерминированных , а частично вариабельных (вероятностых) внутренних связей. Соотношение степени детерминации и вариабельности внутренних связей может быть выражено количес­твенно как отношение величины остаточной энтропии Нr к количес­тву накопленной и сохраняемой структурной информации D IS:

G =

Hr

 

(3.23)

D IS

где G – коэффициент стохастичности (вариабельности, гибкости) внутренних связей.

Оптимальным соотношением жесткости и гибкости внутренних связей Gopt оказывается такое соотношение, которое соответствует степени вариабельности условий внешней среды.

Результаты исследований статистических свойств письменных текстов дали близкие результаты для всех европейских языков:

G @ ¼

Очевидно, эта величина G является для языка оптимальной, так как она характеризует соотношение, возникшее в результате эволюционного развития языка. Будучи величиной статистической, она может варьироваться в зависимости от характера текста: для служебных бумаг и инструкций G < Gopt, для поэтических текстов G > Gopt.

Чем больше величина G, тем менее избыточным будет текст. Избыточность текста характеризуется коэффициентом избыточности R, определяемым как:

R =

Hmax - Hr

=

D IS

 

(3.24)

Hmax

Hmax

Сопоставляя (3.23) и (3.24). можно выразить величину G через R как:

G =

1 – R

   

(3.25)

R

ИНФОРМАЦИЯ И ЭНЕРГИЯ

Для выявления взаимосвязи структурной информации с внут­ренней энергией систем воспользуемся уравнением Гельмгольца:

Перейти на страницу:  1  2  3  4  5  6  7  8  9  10  11  12  13  14