Рефераты по Физике

Энтропия. Теория информации

Страница 10

Для уяснения смысла равенства In = D IS, вытекающего из сопос­тавления выражений (2.6) и (2.7), рассмотрим следующий пример.

Некто получил сообщение, что из яйца вылупился птенец. Для подтверждения того, что это именно птенец, а не малек, сообща­ется, что у него не плавники, а крылья, не жабры, а легкие и т.п. Разумеется, все это не будет избыточной информацией In для вся­кого, кто знает, чем отличается птенец от малька.

Но та же самая информация о крыльях, легких, клюве и т.п., заложенная в генетический код, регулирует процесс онтогенеза, в результате которого в яйце формируется организм птенца, а не малька. Таким образом, информация In, избыточная для осведом­ленного получателя, оказывается необходимой структурной ин­формацией D IS, когда речь идет об информационном управлении процессами формирования тех или иных упорядоченных структур. Вследствие этого и выполняется условие :

In = D IS = Hmax – Hr

(2.8)

ИНФОРМАЦИОННО-ЭНТРОПИЙНЫЕ СООТНОШЕНИЯ ПРОЦЕССОВ АДАПТАЦИИ И РАЗВИТИЯ

Одна из теорем Шеннона свидетельствует об уменьшении ин­формационной энтропии множества АВ, образованного в резуль­тате взаимодействий двух исходных упорядоченных множеств Либ.

H (A,B) ≤ H(A) + H(B)

(3.1)

В этом соотношении знак равенства относится к случаю отсут­ствия взаимодействий между множествами А и В .

В случае взаимодействий происходит уменьшение энтропии на величину:

D H = Н(А) + Н(В) - Н(А,В) (3.2)

Согласно негэнтропийному принципу информации (3.4) получаем :

D IS =Н(А) +Н(В) - Н(А,В) (3.3)

Распространяя рассмотренные Шенноном взаимодействия абстрактных математических множеств на случаи взаимодействий реальных физических систем, можно сделать следующие выводы :

1. Соотношения ( 3.1 ), (3.2) и (3.3 ) можно распространить на случаи взаимодействий упорядоченных физических систем, в частности на взаимодействия физических сред с различными видами полей.

При этом необходимо осуществлять переход от информационной энтропии Н к термодинамическай энтропии S , используя соотношение (1.4) Приложений 1.

2. Знак равенства в соотношении (3.1) соответствует случаю отсутствия взаимодействия между рассматриваемыми физически­ми системами (например, случай воздействия магнитного поля на не обладающую магнитными свойствами среду).

3. Во всех остальных случаях в соответствии с соотношением (3.3) происходит накопление структурной информации D IS, характеризующей увеличение упорядоченности структуры вновь образующейся системы (формирование и ориентация магнитных доменов под воздействием магнитного поля, структуализация под воздействием электрического поля поляризуемых сред и т.п.).

С помощью вероятностной функции энтропии можно описать формальным математическим языком процесс адапации системы к внешним воздействиям, понимая процесс адаптации как обучение оптимальному поведению в заданных условиях внешней среды.

Рассмотрим систему, обладающую возможностью выбора одного из N возможных ответов (реакций) на внешние воздействия. До прохождения обучения система способна отвечать на любые воздействия лишь выбранной наугад реакцией i, причем i может принимать любые значения от i = 1 до i = N, т.е.:

i=1,2,3, . N , (3.4)

При этом условии вероятности всех ответов равны друг другу, т.е.:

Р1= Р2 = … =PН=1/N (3.5)

Как было показано ранее, при этом условии реальная энтропия Нr равна максимальной энтропии Hmax, т.е.:

Hr = -

i = N

pi log pi = log N = Hmax

(3.6)

S

i = 1

В результате обучения возникают различия вероятностей разных реакций.

В соответствии с рассмотренными ранее свойствами функции

S pi log pi

i

 

реальная энтропия Hr уменьша­ется на величину

D IS = Hmax – Hr

(3.7)

С точки зрения теории вероятностей начальный алфавит с заданным числом букв представляет собой полную группу событий.

Для полной группы событий при любом распределении вероятностей сумма их всегда равна 1 , согласно известному из теории вероятности условию нормировки:

i = N

pi = 1

(3.6)

S

i = 1

Смысл условия нормировки заключается в том, что сумма вероятностей выпадения всех 6-ти граней игральной кости равна вероятности выпадения любой грани, т.е. :

Р1 + Р2 + … Р6 = 1/6 + 1/6 + … + 1/6 = 1

6 раз

В рассматриваемом нами процессе обучения, приводящем к дифференцировке значений вероятностей реакций Pi , состав­ляющих полную группу N, условие (3.8) свидетельствует о том, что увеличение вероятностей каких -то реакций может происходить только за счет уменьшения всех остальных вероятностей (чтобы сумма была по-прежнему равна 1, см. рис. 1, случай б).

В предельном случае одна из N вероятностей может возрасти до 1, тогда все остальные вероятности станут равны 0 (рис. 1).

В случае текста предельному случаю дифференцировки соот­ветствует вероятность одной буквы (например, «е»), равная 1. Вероятности всех остальных букв при этом равна нулю. Это значит, что текст вырождается в повторение одной буквы

Перейти на страницу:  1  2  3  4  5  6  7  8  9  10  11  12  13  14