Рефераты по Физике

История изучения капиллярных и поверхностных сил

Страница 6

По Гиббсу, поверхности натяжения соответствует такое по­ложение разде­ляющей поверхности, при котором искривление поверхностного слоя при по­стоян­стве внешних параметров не сказывается на поверхностной энергии и со­ответствует также условию:

¶s/¶r =0 (26) http://clevermed.ru видеогастроскоп pentax eg 2990i: гастроскоп pentax 2990i.

Гуггенгейм так комментирует доказательство Гиббса: «Я на­шел рассмот­рение Гиббса трудным, и чем тщательнее я изучал его, тем более неясным оно мне каза­лось» [16]. Это признание свидетельствует о том, что понимание по­верхности натя­жения по Гиббсу встречало трудности даже у специалистов в области термодина­мики.

Что касается подхода Кондо, то он понятен с первого взгляда. Однако не­об­ходимо убедиться, что поверхности натя­жения по Гиббсу и Кондо адекватны. Это можно про­демонстрировать, например, используя гидростатическое опре­деление поверхност­ного натяжения [19, стр. 61]

(27)

где

Pt — локальное значение тангенциальной составляющей тензора давления;

r' — радиальная координата; радиусы Ra и Rb ограничи­вают поверхностный слой.

Дифференцирование (27) при мысленном перемещении раз­деляющей по­верх­ности и постоянстве физического состояния (подход Кондо) приводит к уравнению (24). Дифференцирова­ние же при искривлении поверхностного слоя и постоянстве физиче­ского состояния (подход Гиббса, в этом случае Ra и Rb переменны) дает

(28)

где учтено, что Pt (Pa ) = Pa и Pt (Pb ) = Pb.

Из уравнений (28) и (24) видно, что условие (26) эквивалентно условию (ds/dr)* = 0 и, следовательно, более простой и на­глядный подход Кондо адеква­тен подходу Гиббса.

Введение понятия разделяющей поверхности позволило математически строго определить ранее чисто интуитивное понятие границы раздела фаз и, значит, использо­вать точно определенные величины в уравнениях. В принципе, термодинамика поверх­ностных явлений Гиббса описывает очень широкий круг явлений, и поэтому (кроме осознания, переформулировок, более изящных выво­дов и доказательств) со времени ее создания было сделано очень мало нового в этой области. Но все же, некоторые резуль­таты, касающиеся в основном тех во­просов, которые не были освещены Гиббсом, обя­зательно должны быть упомянуты.

Развитие и обобщение теории капиллярности Гиббса.

Метод слоя конечной толщины

Первоначально метод слоя конечной толщины, основанный трудами Ван-дер-Ваальса [20], Баккера [21], Версхаффельта [22] и Гуггенгейма [16], раз­вивался как неза­висимый метод термодинамики поверхностных явлений. Позд­нее было обра­щено вни­мание на то, что при строгой формулировке этого метода требуется привлечение поня­тия разделяющей поверх­ности, но при этом исполь­зуется не одна, а две разделяющих поверхности [23]. Еще большая связь с мето­дом Гиббса про­является при построении термодинамики искривленных по­верх­ностей методом слоя конечной толщины [24, 25], где, как и в методе Гиббса, используется понятие поверхности натя­жения.

Рассмотрим равновесную двухфазную систему a – b пло­ской поверхно­стью раз­рыва, состояние которой характери­зуется уравнением

dU = TdS – PdV + sdA + (29)

и введем разделяющую поверхность со стороны фазы a, а также другую разде­ляющую поверхность со стороны фазы b на произвольном расстоянии t друг от друга. Предста­вим, что части системы, разделенные слоем толщины t, запол­нены объем­ными фазами a, b и их состояние описывается уравнениями:

dU a = TdS a – PdV a + sdA + (30)

dU b = TdS b – PdV b + sdA + (31)

Если мы теперь вычтем (11) и (12) из (10), то получим урав­нение

(32)

в котором каждая экстенсивная величина, помеченная чертой сверху, относится к объ­ему Vs=At и представляет собой сумму реальной величины для данного объема и из­бытков со стороны обеих фаз. Например

(33)

где

— реальное количество i-го компонента в слое тол­щиной t;

Г — абсолютная адсорбция i-го компонента со стороны фазы a, отнесенная к раз­деляющей поверхности со стороны той же фазы;

Г — аналогичная величина адсорбции со стороны фазы b.

Очевидно, форма уравнения (32) не зависит от положения разделяющих поверх­ностей и величины t. При t урав­нение (32) переходит в фундамен­тальное уравне­ние Гиббса (25) при t уравнение (32) переходит в уравнение (29) для двух­фазной системы в целом.

Весь термодинамический аппарат строится на совместном рассмотрении уравне­ний (30) – (32) и вытекающих из них соотношений. В пределе t, и отсюда получа­ется вся теория капиллярности Гиббса, а при t—другой предельный вариант тер­модинамики поверхностных явлений (этот вариант был недавно рассмотрен Гудричем [26, стр. 1—37] ), в кото­ром вообще не использу­ется представление о разделяющей по­верхности. Таким образом, мы можем ска­зать, что метод слоя конечной толщины явля­ется обобщением метода Гиббса и наиболее общим методом рассмотрения термодинамики по­верхностных явле­ний.

Уравнение адсорбции Гиббса

Наиболее известным результатом теории капиллярности Гиббса является уравне­ние адсорбции

(34)

Перейти на страницу:  1  2  3  4  5  6  7  8  9  10