Рефераты по Физике

История изучения капиллярных и поверхностных сил

Страница 7

где

— избыточная энтропия на единицу поверхности;

Гi — абсолютная адсорбция i-го компонента.

Это уравнение было получено Гиббсом только для жидких поверхностей. Оно от­носится к поверхности натяжения и справедливо как для плоских, так и для искривлен­ных поверх­ностей.

В течение минувшего столетия уравнение адсорбции Гиббса многократно обоб­щалось и каждая его новая форма была вехой в развитии термодинамики поверхност­ных явлений, а также этапом лучшего понимания самой теории Гиб­бса. Последнее не­сомненно при рассмотрении обобщенной формы уравнения адсорбции Гиббса для про­извольного положения сферической разделяющей по­верхности [18, 27, 28]:

(35)

Следует отметить, что уравнение (35) является лишь обоб­щением формы уравне­ния адсорбции Гиббса и физически со­вершенно эквивалентно уравнению (34). Более того, можно сказать, что, уступая уравнению (34) в простоте, урав­нение (35) и услож­няет интерпретацию величины s, поскольку утрачи­вается аналогия с натяжением упру­гой мембраны. Строго говоря, термин «поверхностное натяжение» применим только к поверхности натяжения.

Другой обобщенной и также физически эквивалентной формой является запись уравнения адсорбции Гиббса для слоя конечной толщины [24]

Ads= (36)

где Va и Vb — части объема Vs поверхностного слоя, разде­ленные поверхностью натя­жения.

В случае плоской поверхности уравнение (17) принимает вид [4, 17, 18]

(37)

и соответствует уравнению (32).

Выше мы указывали, что уравнение (34) было получено Гиббсом для гра­ницы флюидных фаз. Соответствующее уравне­ние для плоской твердой поверх­ности в изо­тропном состоянии было выведено Эрикссоном [30]

(38)

где

g — механический аналог поверхностного натяжения жид­кости (истинное поверхно­стное натяжение твердого тела);

s — термодинамический аналог поверхностного натяжения жидкости (условное по­верхностное натяжение твер­дого тела).

В общем случае анизотропной поверхности твердого тела уравнение ад­сорбции принимает вид [26, 27]

: (39)

где

— тензор избыточных поверхностных напряжений;

— единичный тензор;

— тензор поверхностной деформации; символ : озна­чает скалярное произ­ведение тензоров.

В уравнении (39) суммирование производится по всем под­вижным компо­нентам. Что касается неподвижных компонен­тов, образующих решетку твердого тела, то их хи­мические потенциалы не фигурируют в уравнении (39). Гиббс во­обще не вводил поня­тия химический потенциал неподвижного компо­нента. Его можно определить лишь ус­ловно и отдельно для каждого направления разреза твердого тела как химический по­тенциал в равновесной флюидной фазе, кон­тактирующей с твердым телом по данному разрезу. Определенный таким об­ра­зом химический потенциал неподвижного компо­нента mi' зависит в каждой точке тела от направления нормали к мыс­ленной поверх­ности разреза.

Кроме того, даже в состоянии истинного равновесия вели­чина mi не будет одина­ковой для всех точек разреза и поэтому при переходе к избыточным вели­чинам для межфазной поверх­ности приходится брать избыток от произведения химического по­тенциала на массу неподвижного компонента. Для каждого на­правления на межфаз­ной поверхности можно определить величину

(40)

причем существует соотношение [31, 32]

(41)

где gn — натяжение на поверхности в направлении .

Подстановка (41) в (39) приводит к уравнению [31, 32]

: (42)

которое также является обобщением уравнения адсорбции Гиббса на случай твердой поверхности, но сформулировано в терминах избыточного поверхност­ного напряжения. Для жидкой поверхности , и уравнения (39) и (42) переходят в уравнение адсорбции Гиббса.

При применении уравнения адсорбции Гиббса к поверх­ности жидкого электрода в нем появляется дополнительный член, связанный с изменением электрического потен­циала. Можно сказать, что для изотермо-изобарических условий этот член был получен самим Гиббсом, поскольку он дал термоди­на­мический вывод уравнения Липпмана. В дальнейшем этот вопрос многократно обсуждался при исследовании электрокапилляр­ных явлений (см., например, [33 – 35]). Строгий вы­вод уравнения адсорбции Гиббса для плоского поверхност­ного слоя электрода был дан Парсонсом [36]. Соответствующую теорию для искрив­ленного слоя можно найти в [25, 14].

К весьма сложным разделам термодинамики поверхностных явлений отно­сится анализ искривленных поверхностей во внешних полях. Гиббсом было на­чато рассмот­рение поверх­ностных явлений в гравитационном поле. Что касается элек­трического поля, то результаты были получены значительно позднее. Труд­ность рассмотрения здесь сильно зависит от того, являются ли соприкасаю­щиеся фазы проводниками или ди­электриками, Задача для соприкасающихся проводников ре­шается сравнительно про­сто [37], для диэлектриков — зна­чи­тельно сложнее [38].

Перейти на страницу:  1  2  3  4  5  6  7  8  9  10