Кристаллы в природе
В 1867г. впервые со всей очевидностью русский инженер и кристаллограф А.В. Гадолин доказал, что кристаллы могут обладать лишь 32 видами симметрии.
1.6. Пространственная решётка
Симметрия, закон постоянства углов и ряд других свойств кристаллов привели кристаллографов к догадке о закономерном расположении частиц, составляющих кристалл. Они стали представлять, что частицы в кристалле расположены так, что центры тяжести их образуют правильную пространственную решётку. Например, кристалл поваренной соли NaCl состоит из совокупности большого числа ионов Na+ и Cl- , определённым обзором расположенных друг относительно друга. Если изобразить каждый из ионов точкой и соединить их между собой, то можно получить геометрический образ, рисующий внутреннюю структуру идеального кристалла поверенной соли, его пространственную решётку (рис.5). Пространственные решётки различных кристаллов различны.
рис.5
а б в г
рис. 6
Понятие о пространственной решётке кристалла оказалось очень плодотворным, оно позволило объяснить ряд свойств кристалла.
Например, что кристалл, имеющий идеальную форму, ограничен плоскими гранями и прямыми рёбрами.
Этот факт можно объяснить тем, что плоскости и рёбра идеального кристалла всегда проходят через узлы пространственной решётки.
Пространственная решётка позволяет объяснить и основной закон кристаллографии - закон постоянства углов.
Однако плодотворность представления внутреннего строения кристалла в виде пространственной решётки наиболее наглядно проявляется в объяснении симметрии кристаллов. Всё разнообразие видов симметрии кристаллов может быть доказано на основе симметрии пространственных решёток. Симметрия кристаллов является следствием симметрии пространственной решётки.
Доказательство этого факта имело значения для науки. Работы Е.С. Федорова превратили кристаллографию в стройную теоретическую науку, возвысив её в конце XIX века. Над всеми науками о строении твёрдых тел.
1.7. Экспериментальные исследования строения кристаллов
С древнейших времёнкристаллы поражали человеческое воображение своим исключительным геометрическим совершенством. Наши предки видели в них творения ангелов или подземных духов. Первой попыткой научного объяснения формы кристаллов считается произведение Иоганна Кеплера «О шестиугольных снежинках» (1611). Кеплер высказывал предположение, что форма снежинок (кристалликов льда) есть следствие особых расположений составляющих их частиц. Спустя три века было окончательно установлено, что специфические особенности кристаллов связаны с особыми расположениями атомов в пространстве, которые аналогичны узорам в калейдоскопах. Все различные законы таких расположений были выведены в 1891 году нашим соотечественником Е.С.Федеровым (1853-1919). Правильные формы кристаллических многогранников легко объясняются в рамках этих законов. И сами эти законы настолько красивы, что не раз служили основой для произведений искусства.
С геометрической точки зрения расположения атомов в пространстве представляется системой точек, соответствующих их центрам. Поэтому задачу можно поставить так: требуется найти геометрические условия, выделяющие системы точек с «кристаллической структурой», причем эти условия должны быть физически оправданы. Последнее весьма существенно, коль скоро мы хотим выявить причины упорядоченного расположения атомов в кристаллах.
Простейшим геометрическим свойством систем точек, соответствующих центром атомов в любых атомных совокупностях является дискретность.
Условия дискретности. Расстояние между любыми двумя точками системы больше некоторой фиксированной величины r. Физическая очевидность этого условия не вызывает сомнений.
Стремление атомов равномерно расположиться в пространстве, можно отразить следующим ограничением на соответствующую систему точек:
Условия покрытия. Расстояние от любой точки пространства до ближайшей к ней точки системы меньше некоторой фиксированной величины R.
Название этого условия объясняется тем, что если система точек ему удовлетворяет, то шары радиуса R с центрами в этих точках покрывают всё пространства.
Условия дискретности не позволяют точкам системы располагаться слишком густо, а условия покрытия – слишком редко. Совместно эти два требования обеспечивают примерно равномерное расположение точек в пространстве. Системы точек, удовлетворяющие этим двум условиям одновременно, называются системами Делона, в память о Б.Н.Делоне (1890-1980), впервые выделившем эти системы.
Симметрия кристаллов специфична. Например, среди кристаллических многогранников, имеющих оси симметрии 5-го порядка (то есть «самосовмещающихся» при поворотах на угол 2π/5 около этих осей). Как объяснить такую привередливость кристаллических форм?
В1783 году французский аббат Р.Ж.Гаюи, минеролог по призванию, высказал предположение, что всякий кристалл составлен из параллельно расположенных равных частиц, смежных по целым граням. (рис.7)
рис. 7
В 1824 году ученик великого Гаусса, профессор физики во Фрайбурге Л.А.Зеебер для объяснения расширения кристаллов при нагревании предложил заменить многогранники Гаюи их центрами тяжестей. Такие системы точек были названы «решетками». Плоские сетки решётки, связанные преобразованиями симметрии, неотличимы друг от друга. Поэтому при росте кристалла соответствующие им грани растут одинаково. Так симметрия кристалла повторяет симметрию решётки. В том же году немецкий учёный А.Зибер предложил составлять кристаллы из регулярно расположенных маленьких сфер, взаимодействующих подобно атомам. Плотная упаковка таких сфер соответствует минимуму потенциальной энергии их взаимодействия.
Но не все известные о кристаллах факты укладывались в рамки решётчатой модели. Один из таких фактов - это существование нецентросимметричных кристаллических многогранников, таких как кристалла драгоценного камня турмалина.
Перейти на страницу: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29