Рефераты по Физике

Кристаллы в природе

Страница 23

а б рис. 52

Кристаллическую решётку антиферромагнетика можно рассматривать в простейшем случае как совокупность двух пространственных решёток, как бы «вдвинутых» одна в другую. Каждую из таких решёток называют подрешёткой. Ориентация магнитных моментов в каждой подрешётке одинаковая у всех элементов подрешётки, а во «вдвинутых» друг в друга подрешётках - антипараллельная.

Каковы же свойства антиферромагнетиков? При низких температурах магнитная проницаемость этих веществ мала. С ростом температуры наблюдается увеличение значения магнитной проницаемости μ. Но есть определённая температура, при которой вещество теряет свои антиферромагнитные свойства и при более высокой температуре ведёт себя уже как обычный парамагнетик. Эта точка у антиферромагнетиков, аналогичная точке Кюри для ферромагнетиков, получила название точки Неля.

Антиферромагнетики трудно отличить от других магнитных веществ. Легче всего это сделать путём определения зависимости магнитной проницаемости вещества от температуры. Если у вещества есть максимум проницаемости при некоторой температуре, то это антиферромагнетик. Эта температура - точка Неля.

Большое практическое значение приобрели вещества, получившие название ферритов. Чтобы понять свойства феррита, представим себе кристалл, структура которого соответствует двум подрешеткам, причём эти подрешётки имеют магнитные моменты, различные по величине и противоположные по направлению. Полные компенсации магнитных моментов в этом случае не происходит. Такое вещество ведет себя подобно ферромагнетику, но с более сложной зависимостью намагниченности от температуры.

Ферриты представляют собой твёрдые растворы, состоящие из окиси железа и окиси одного или нескольких металлов. Получают их спеканием при температуре 900 - 1400°С мелкораздробленных и перемещённых окислов. Применяют их в основном в приборах, работающих на токах сверхвысоких частот, в тех случаях, когда надо понизить потери в сердечниках катушек. Ферриты - полупроводники, их удельное сопротивление значительно больше удельного сопротивления металлических ферромагнетиков. Магнитная проницаемость их достаточно велика.

VII Жидкие кристаллы.

Удивительный мир жидких кристаллов открылся глазами ученых сравнительно давно. Но за последние 15-20 лет произошёл огромный скачок в понимании природы жидкокристаллического состояния физических свойств этих веществ, их роли в современной науке и технике. И сейчас уже нет сомнений в том, что без этих материалов, разнообразных по своим свойствам, высокоэкономичных, сравнительно простых в изготовлении и применении, дальнейший научно-технический прогресс не может обойтись.

Самые первые сведения о таких веществах были сообщены в 1888 году австрийским ботаником Ф.Рейницером, который синтезировал необычные кристаллы. При их нагревании получалась жидкость, которая в зависимости от температуры была то мутной, то прозрачной, то приобретала синеватый цвет. Немецкий физик О.Леман начал систематическое изучение таких веществ и установил, что открыто особое состояние, присущее многим органическим соединениям. Жидкие кристаллы делятся на нематическую жидкость, холестерическую и смектическую жидкость.

7.1.Нематическая жидкость.

Жидкости сильно отличаются от газов и твёрдых кристаллов. Атомы или молекулы, из которых состоит жидкость, не могут разойтись на сколь угодно большое расстояние друг от друга. Это означает, что в жидкости очень важны силы притяжения между атомами или молекулами. То же самое можно сказать и о твёрдом кристалле, но в кристалле эти силы настолько велики, что атомы вынуждены занимать в нём определённые места, образуя трёхмерную кристаллическую решётку. В такой решётке всегда имеются выделенные направления, называемые осями кристалла. Вдоль этих направлений атомы располагаются в строго периодическом порядке. В обычной жидкости нет никаких выделенных направлений, она не обладает собственной формой, потому что молекулы жидкости не столь прочно связаны друг с другом и могут перемещаться в пространстве – перескакивать с места на место.

Таким образом, в текучей жидкости молекулы только в среднем находятся на некотором характерном расстоянии друг от друга. Ответ на вопрос, как взаимодействуют между собой молекулы и чему равно среднее расстояние а между ними, дает квантовая механика. Оказывается, что на больших расстояниях между молекулами их взаимодействие определяется силами притяжения, а на очень

малых расстояниях – силами отталкивания

Следовательно, молекулы не могут сблизиться на сколь угодно малое расстояние из-за очень больших сил отталкивания - в этом случае говорят, что молекулы не могут проникать друг в друга.

На расстоянии а, примерно равном размеру молекул, сила, взаимодействующая между молекулами, становится равной нулю.

Так устроена обычная жидкость, состоящая из относительно простых молекул или атомов. Однако нас поджидает замечательное открытие, если молекулы имеют ярко выраженную анизотропную форму, то есть если у молекул можно четко выделить какие-нибудь характерные оси.

рис.53

Такие молекулы схематически изображены на рис53. В них атомы располагаются не, как попало, а выстроены вдоль определённой линии (рис53а) или лежат в выделенной плоскости (рис53,б).

Взаимодействие молекул такой формы приводит к тому, что в жидком состоянии они не только удерживаются на некотором среднем расстоянии друг от друга, но могут сохранять определённый порядок в своём относительном расположении – длинные оси молекул (рис54а) или плоскости молекул (рис54б)

Перейти на страницу:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29